The McGraw -Hill Companies

"~ FOURTH EDITION
Sumitabha Das

el L A

Information contained in this work has been obtained by Tata McGraw-
Hill, from sources believed to be reliable. However, ncither Tata
MeGraw-Hill nor its authors guarantee the accuracy or completeness of
any information published herein, and neither Tata McGraw-Hill nor its
authors shall be responsible for any errors, omissions, or damages
arising out of use of this information. This work is published with the
understanding that Tata McGraw-Hill and its authors are supplying
information but are not attempting to render engineering or other
professional services. If such services are required, the assistance of an
approprate professional should be sought.

N
. Tata McGraw-Hill

Copyright © 2006, 2003, 1998, 1992 by Tata McGraw-Hill Publishing Company Limited.

Eighth reprint 2008
DCXCRRYXRQRDD

No part of this publication may be reproduced or distributed in any form
or by any means, electronic, mechanical, photocopying, recording, or
otherwisce or stored in a database or retrieval system without the prior
written permission of the publishers. The program listings (if any) may
be entered, stored and executed in a computer system, but th-y may not
be reproduced for publication.

This edition can be exported from India only by the publishers,
‘Tata McGraw-Hill Publishing Company Limited

ISBN-13: 978-0-07-063546-3
ISBN-10: 0-07-063546-3

Published by Tata McGraw-Hill Publishing Company Limited,

7 West Patel Nagar, New Delhi 110 008, typeset in Times at Script Makers,
19, Al-B, DDA Market, Pashchim Vihar, New Delhi 110 063and printed at
Pashupati Printers Pvt. Ltd., Delhi 110 095

The McGraw-Hill companies

Conventions Used in
This Book

The following conventions have been used in this book:
o Key terms are shown in a large bold font:
What you see above is an absolute pathname,

« Commands, program names, user input in examples and system calls are shown in bold constant
width font:

Many commands in more including f and b use a repeat factor.
The shell features three types of loops—while, until and for.
Enter your name: henry
The forking mechanism uses the fork system call to create a process.
« Apart from command output, filenames, command options, strings, expressions and symbols
are shown in constant width font:
Most commands are located in /bin and Jusr/bin.
Try doing that with the name jai sharma.
There’s adequate scope of using the -e and -f options.
The shell looks for the characters >, < and << in the command line.
+ Machine and domain names, email addresses and URLs are displayed in italics:
This copies a file from the remote machine saturn.
User kumar on this host can be addressed as kumar@cales.heavens.com.
Google offers comprehensive News services at hutp://groups.google.com.
« Placeholders for filenames, terms, menu options and explanatory comments within examples
are displayed in italics:
When compiled with cc filename, it produces a file named a.out.
... to develop a set of standard rules (protocols)
Use Edit > Preferences to configure Netscape.
$cd../.. Mbouves two levels up
¢ The following abbreviations, shortcuts and symbols have been used:
SVR4—System V Release 4
sh—Bourne shell
csh—C shell
ksh—Korn shell
$HOME /fIname—The file flname in the home directory
~/flname—The file flname in the home directory
foo and bar—Generic file and directory names as used on USENET

; For the ‘Beginner

Getting Started

This chapter begins the tour of the UNIX universe. To understand UNIX, we’ll first have to know
what an operating system is, why a computer needs one and how UNIX is vastly different from
other operating systems that came before—and after. Through a hands-on session, we'll learn to
play with the UNIX system and acquire familiarity with some of its commands that are used
everyday for interacting with the system. The experience of the introductory session will help us
understand the concepts presented in the next chapter.

UNIX has had a rather turbulent background. Knowing this background will help us understand
the objectives that guided its development. Even though UNIX owes its origin to AT&T,
contributions made by the academic community and industry have also led to the enrichment and
fragmentation of UNIX. The emergence of a windowing (GUI) system, however, has often led
users to adopt undesirable shortcuts. For the initiated though, Linux offers a superior and cost-
effective solution for the mastery of UNIX.

WHAT YOoU WILL LEARN
e What an operating system is and how UNIX more than fulfills that role.

e Know the location of the special characters on the keyboard.

« Login and out of a UNIX system using a username and password.

¢ Run a few commands like date, who and cal.

o View processes with ps, and files with 1s.

e Use a special character like the * to match multiple filenames.

o The role of the shell in interpreting these special characters (metacharacters).
A brief background of UNIX and Linux.

« How the Internet contributed to the acceptance of UNIX.

r— TOPICS OF SPECIAL INTEREST

« Examination of the sequence of steps followed by the shell in executing the command 1s > 1ist
to save command output in a file.

e A similar examination of the sequence 1s | wc to connect two commands to form a pipeline.

l4 ~ UNIX: Concepts and Applications

1.1 THE OPERATING SYSTEM

We use computers freely, but most of us never bother to know what's inside the box. Why should
we? After all, we also use TV and never care to find out how this idiot box manages to convert
invisible radio waves to real-life colorful pictures. Yes, you can certainly use spreadsheets and word
processors without knowing how these programs access the machine’s resources. As long as you
continue to get all those reports and charts, do v ou really need to know anything else?

Then the inevitable happens. The great crash occurs, the machine refuses to boot. The expert tells
you that the operating system has to be reloaded. You are taken in by surprise. You've heard of
software, and you have used lots of them. But what is this thing called the operating system? Is i 1t
just another piece of software?

Relax, it is. But it’s not just any ordinary software that helps you write letters, but a special one—
one that gives life to a machine. Every computer needs some basic intelligence to start with. Unlike
mortals, a computer is not born with any. This intelligence is used to provide the essential services
for programs that run under its auspices—like using the CPU, allocating memory and accessing
devices like the hard disk for reading and writing files.

The computer provides yet another type of service, this time for you—the user. You'll always need
to copy or delete a file, or create a directory to house files. You'll need to know the people who are
working in the network, or send a mail message to a friend. As a system administrator, you'll also
have to back up files. No word processor will do all this for you, neither will your Web browser. All
this belongs rightly to the domain of what is known as the operating system.

So, what is an operating system? An operating system is the software that manages the computer’s
hardware and provides a convenient and safe environment for running programs. It acts as an
interface between programs and the hardware resources that these programs access (like memory,
hard disk and printer). It is loaded into memory when a computer is booted and remains active as
long as the machine is up.

To grasp the key features of an operating system, let’s consider the management tasks it has to
perform when we run a program. These operations also depend on the operating system we are
using, but the following actions are common to most systems:

+ The operating system allocates memory for the program and loads the program to the allocated
Mmemory.

¢ Italso loads the CPU registers with control information related to the program. The registers
maintain the memory locations where each segment of a program is stored.

¢ The instructions provided in the program are executed by the CPU. The operating system
keeps track of the instruction that was last executed. This enables it to resume a program if it
had to be taken out of the CPU before it completed execution.

o Ifthe program needs to access the hardware, it makes a call to the operating system rather than
attempt to do the job itself. For instance, if the program needs to read a file on disk, the operating
system directs the disk controller to open the file and make the data available to the program.

« After the program has completed execution, the operating system cleans up the memory and
registers and makes them available for the next program.

Getting Started .

Modern operating systems are multiprogramming, i.e. they allow multiple programs to be in memory.
However, on computers with a single CPU, only one program can run at any instant, Rather than
allow a single program to run to completion without interruption, an operating system generally
allows a program to run for a small instant of time, save its current state and then load the next
program in the queue. The operating system creates a process for each program and then control
the switching of these processes.

There have been lots of operating systems in the past, one at least from each hardware vendor.
They all contributed in their own way to the chaotic situation that made programs written on one
machine totally incapable of running on another. Vendors required consumers to purchase expensive
proprietary hardware and software if two dissimilar machines needed to talk to each other. We also
had DOS and Windows (in all its manifestations) on our desktop computers providing us with a
cheaper and user-friendly way of computing.

1.2 THE UNIX OPERATING SYSTEM

Like DOS and Windows, there’s another operating system called UNIX. It arrived earlier than the
other two, and stayed back late enough to give us the Internet. UNIX is a giant operating system,
and is way ahead of them in sheer power. It has practically everything an operating system should
have, and several features which other operating systems never had. Its richness and elegance go
beyond the commands and tools that constitute it, while simplicity permeates the entire system. It
runs on practically every hardware and provided inspiration to the Open Source movement.

However, UNIX also makes many demands of the user. It requires a different type of commitment
to understand the subject, even when the useris an experienced computer professional. It introduces
certain concepts not known to the computing community before, and uses numerous symbols
whose meanings are anything but obvious. It achieves unusual tasks with a few keystrokes, but it
takes time to devise a sequence of them for a specific task. Often, it doesn’t tell you whether you are
right or wrong, and doesn’t warn you of the consequences of your actions. That is probably the
reason why many people still prefer to stay away from UNIX.

You interact with a UNIX system through a command interpreter called the shell. Key in a word,
and the shell interprets it as a command to be executed. A command may already exist on the
system as one of several hundred native tools or it could be one written by you. However, the power
of UNIX lies in combining these commands in the same way the English language lets you combine
words to generate a meaningful idea. As you walk through the chapters of the text, you'll soon
discover that this is a major strength of the system.

Kernighan and Pike (The UNIX Programming Environment, Prentice-Hall) lamented long ago
that “as the UNIX system has spread, the fraction of its users who are skilled in its application has
decreased.” Many people still use the system as they would use any other operating system, and
continue to write comprehensive programs that have already been written before. Beginners with
some experience in DOS and Windows think of UNIX in terms of them, quite oblivious of the fact
that UNIX has much more to offer. Though references to DOS/Windows have often been made
whenever a similar feature was encountered, the similarities end there too. You should not let them
get in the way of the UNIX experience.

- UNIX: Concepts and Applications

1.3 KNOWING YOUR MACHINE
Unlike DOS and Windows, UNIX can be used by several users concurrently. In other words, a

single copy of the operating system installed on disk can serve the needs of hundreds of users. If you
have access to such a multiuser system, then in all probability you'll be sitting with just a terminal
or monitor, and a keyboard. Like you, there will be others working on similar terminals. The rest
of the equipment will probably be located in a separate room with restricted access. In this
arrangement, you are expected to hook on to your account, do your work, disconnect and leave
quietly.

Things are quite different, however, when you are the sole user of the system. This could happen
if you work on a desktop machine that has its own CPU (the Central Processor Unit), RAM (Random
Access Memory—the memory), hard disk, floppy and CD-ROM drives, printer and the controllers
of these devices. If you own the machine, you are directly responsible for its startup, shutdown and
maintenance. If you lose a file, it’s your job to get it from a backup. If things don’t work properly,
you have to try all possible means to set them right before you decide to call the maintenance
person.

1.3.1 The Keyboard

Before you start working, you need to know right now the functions of a number of keys on the
keyboard. Many of these keys are either not used by DOS/Windows, or have different functions
there. The portion of the keyboard at the left having the OWERTY layout resembles your typewriter.
You need to be familiar with this section of the keyboard initially, in addition to some other keys in
its immediate vicinity. If you know typing, you are on familiar terrain, and keyboard phobia should
not get in your way,

Apart from the alphanumeric keys, you'll observe a number of symbols as shown below:
Tl eEsE e () _ =N [I{s e, <>/

Each alphabet, number or symbol is known as a character, which represents the smallest piece of
information that you can deal with. All of these characters have unique values assigned to them,
called the ASCII value (ASCII-—American Standard Code for Information Interchange). For
instance, the letter A has the ASCII value 65, while the bang or exclamation mark (!) has the value
21.

There are some keys that have no counterparts in the typewriter. Note the key [Enter/] at the right
which is used to terminate a line. On some machines this key may be labeled [Return]. The
significance of this key is taken up in Section 1.4.4.

When you look at a blank screen, you'll see a blinking object called a cursor. When you key in a
character, it shows up at the location of the cursor, while moving the cursor itself right. Directly
above the [Enter] key is the key shown with a «— or labeled [Backspace]. You have to press this key
to erase one or more characters that you have just entered, using a feature known as backspacing.
When this key is pressed, the cursor moves over the character placed on its left and removes it from

sight.

I 8 UNIX: Concepts and Applications

The prompt here is preceded by the version of the operating system, SunOS 5.8, which is the
operating system of Solaris 8. This is a flavor (brand) of UNIX offered by Sun Microsystems, but

your system could show a different string here (if at all). The prompt itself could have a prefix
showing the machine name. (Yes, every machine has a name in UNIX.)

The login prompt indicates that the terminal is available for someone tolog in (i.c., connect to the
machine). This message also indicates that the previous user has logged out (i.c., finished her
work and disconnected). Since you now have an account named ‘kumar’, enter this string at the
prompt. Then press the [Enter| key after the string:

login: kumar/Enter]
Password:

The system now requests you to enter the secret code that was handed to you by your administrator.
This code should be known to none except yourself. (The administrator doesn’t need to know!)
Type the secret code and press [Enter/:

login: kumar
Password: *********/Eyser| Entry not displayed

You may be surprised to observe that the string you entered at the Password: promptisn’t displayed
on the screen. This is another security feature built into the system that doesn’t let someone near
you see what you have entered (unless, of course, she has been meticulously monitoring your
finger movements!).

If yvou make mistakes while typing, simply press [Enter] one or two times until the login prompt
reappears on the screen. Be sure to terminate your responses with [Enter] to make the system “see”
the input that you have entered.

The string that you entered at the first prompt (1ogin:) is known variously as your login name,
user-id, or username, and these names will be used interchangeably throughout this book. The
secret code that you entered at the next prompt (Password:) is known as the password. If you enter
either of them incorrectly, the system flashes the following message:

Login incorrect

login:
Another level of security! You simply don’t know what went wrong—your login name or your
password. The message Login incorrect is in fact quite deceptive. In most cases, it's the password
that's the culprit. Go back to your secret diary where the password should have been noted and
restart the session. When you get both these parameters correct, this is what you could see on a
Solaris system:

Last login: Thu May 9 06:48:39 from saturn.heavens.com
$ The cursor shown by the _character

The system now shows the $ as the prompt, with the cursor constantly blinking beside it. This is
a typical UNIX prompt, and many UNIX systems use the § as the default prompt string. For some
users, you might see the % instead of the §, and the system administrator will in all probability be
using the #. UNIX allows you to customize the prompt, and it's not unusual to see prompts like these:

I 10 UNIX: Concepts and Applications

date is a valid command, and it displays both the date and time. Notice another security feature of
UNIX; the command doesn’t prompt you to change either the date or time. This facility is available
only to the administrator, and the strange thing is that he uses the same command (15.2.1) to do it!

So what is date? It's one of several hundred programs available in the UNIX system. Whatever
you input through the keyboard is interpreted by the system as a command, and when you use
one, you are in fact commanding the machine to do something. The date command instructs the
machine to display the current date and time. Incidentally, most UNIX commands are represented
as files in the system.

Caution: Tampering with the system date can have adverse effects on a UNIX system. There are many
processes that go on in the background without your knowledge, and they are scheduled to start at
specific times. If a nonprivileged (ordinary) user (The system administrator is known as the superuser
simply because he’s blessed with enormous powers!) is allowed to change the date and time at will,
chaos will ensue.

Note: Henceforth, we'll use the terms privileged user, superuser and system administrator to refer to
the root user account that is used by the administrator for logging in, and nonprivileged user to mean
all other users. It's often important for us to make this distinction because the root user enjoys certain
privileges that are denied others.

1.4.4 Two Important Observations

You have had your first interaction with the system by running two commands after logging in.
Even though one command worked and the other didn’t, you had to terminate each by hitting the
[Enter] key. The text that you type at the terminal remains hidden from the system until this key is
pressed. First-time users often fail to appreciate this point because there’s no “[Enter] key” in the
human information system. Humans register speech or text, as it is being spoken or read, in a
continuous manner. In this respect, this key resembles the shutter of a camera; nothing gets into
the film unul the shutter is pressed.

Also note that the completion of a command, successful or otherwise, is indicated by the return of
the prompt (here, a §). The presence of the prompt indicates that all work related to the previous
command have been completed, and the system is ready to accept the next command. Henceforth,
we'll not indicate the [Enter] key or the return of the prompt except in not-so-obvious circumstances.

1.4.5 tput clear: Clearing the Screen

All UNIX systems offer the tput command to clear the screen. This is something you'd often like
to do to avoid getting distracted by output or error messages of previous commands. However,
when you use tput as it is, (i.e., without any additional words), this is what UNIX has to say:

$ tput

usage: tput [-T [term]] capname [parm argument...]
OR: tput -5 =<

Getting Started 1 l

This message makes little sense to a beginner, so we won't attempt to interpret it right now. However,
one thing is obvious; tput requires additional input to work properly. To make tput work, follow
tput with the word clear:

tput clear clear is an argument to tput

The screen clears and the prompt and cursor are positioned at the top-left corner. Some systems
also offer the clear command, but the standard UNIX specifications (like POSIX) don’t require
UNIX systems to offer this command. You must remember to use tput clear to clear the screen
because we won't be discussing this command again in this text

Note: The additional word used with tput isn't a command, but is referred to as an argument. Here,
clear is an argument to tput, and the fact that tput refused to work alone indicates that it always
requires an argument (sometimes more). And, if clear is one argument, there could be others. We'll
often refer to the default behavior of a command to mean the effect of a using a command without any
arguments.

1.4.6 cal: The Calendar

cal is a handy tool that you can invoke any time to see the calendar of any specific month, or a
complete year. To see the calendar for the month of July, 2006, provide the month number and year
as the two arguments to cal:

$ cal 7 2006 Command run with two arguments
July 2006
Su Mo Tu We Th Fr Sa
1
2 3 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

With cal, you can produce the calendar for any month or year between the years 1 and 9999, This
should serve our requirements for some time, right? We'll see more of this command later.

4
1

1.4.7 who: Who Are the Users?

UNIX is a system that can be concurrently used by multiple users, and you might be interested in
knowing the people who are also using the system like you. Use the who command:

% who

kumar console May 9 09:31 (:0)

vipul pts/4 May 9 09:31 (:0.0)

raghav pts/5 May 9 09:32 (saturn.heavens.com)

There are currently three users—kumar, vipul and raghav. These are actually the user-ids or
usernames they used to log in. The output also includes the username, kumar, which you entered

I 12 UNIX: Concepts and Applications

at the login: prompt to gain entry to the system. The second column shows the name of the
terminal the user is working on. Just as all users have names, all terminals, disks and printers also
have names. You'll see later that these names are represented as files in the system. The date and
time of login are also shown in the output. Ignore the last column for the time being.

Observe also that the output of who doesn’t include any headers to indicate what the various columns
mean. This is an important feature of the system, and is in some measure responsible for the
unfriendly image that UNIX has acquired. After you have completed Chapter 8, you'll discover
that it 1s actually a blessing in disguise,

You logged in with the name kumar, so the system addresses you by this name and associates
kumar with whatever work you do. Create a file and the system will make kumar the owner of the
file. Execute a program and kumar will be the owner of the process (next topic) associated with
your program. Send mail to another user and the system will inform the recipient that mail has
arrived from kumar.

Note: UNIX isn't just a repository of commands producing informative output. You can extract useful
information from command output for using with other commands. For instance, you can extract the
day of the week (here, Fri) from the date output and then devise a program that does different things
depending on the day the program is invoked. You can also “cut” the user-ids from the who output and
use the list with the mai1x command to send mail to all users currently logged in. The facility to perform
these useful tasks with one or two lines of code makes UNIX truly different from other operating systems.

1.4.8 ps: Viewing Processes

We observed that the shell program is always running at your terminal. Every command that you
run gives rise to a process, and the shell is a process as well. To view all processes that you are
responsible for creating, run the ps command:

5 ps
PID TTY TIME CMD
364 console 0:00 ksh Shell running all the time!

Unlike who, ps generates a header followed by a line containing the details of the ksh process.
When you run several programs, there will be multiple lines in the ps output. ksh represents the
Korn shell (an advanced shell from AT&T) and is constantly running at this terminal. This process

has a unique number 364 (called the process-id or PID), and when you log out, this process is
killed.

Note: Even though we are using the Korn shell here, you could be using another shell. Instead of ksh,
you could see sh (the primitive Bourne shell), esh (C shell—still popular today) or bash (Bash shell—a
very powerful shell and recommended for use). Throughout this book, we'll be comparing the features
of these shells and discover features that are available in one shell but not in another. If a command
doesn't produce output as explained in this text, it can often be attributed to the shell.

Getting Started 13 I

1.4.9 1s: Listing Files

Your UNIX system has a large number of files that control its functioning, and users also create
files on their own. These files are organized in separate folders called directories. You can list the
names of the files available in this directory with the 1s command:

$1s

README Uppercase first
chap01

chap02

chap03

helpdir

progs

1s displays a list of six files, three of which actually contain the chapters of this textbook. Note that
the files are arranged alphabetically with uppercase having precedence over lower (which we call

the ASCII collating sequence).

Since the files containing the first three chapters have similar filenames, UNIX lets you use a
special short-hand notation (*) to access them:

$ 1s chap*
chap01
chap02
chap03

Sometimes, just displaying a list of filenames isn’t enough; you need to know more about these
files. For that to happen, 1s has to be used with anoption, -1, between the command and filenames:

$ 1s -1 chap* =115 an option
-rw=r--r-- 1 kumar users 5609 Apr 23 09:30 chap0l
-rw-r--r-- 1 kumar users 26129 May 14 18:55 chap02
-rw-r--r-- 1 kumar users 37385 May 15 10:30 chap03

The argument beginning with a hyphen is known as an option. The characteristic feature of most
command options is that they begin with a - (hyphen). An option changes the default behavior
(i.e. when used without options) of a command, so if 1s prints a columnar list of files, the -1 option
makes it display some of the attributes as well.

1.4.10 Directing Output to a File

UNIX has simple symbols (called metacharacters) for creating and storing information in files.
Instead of viewing the output of the 1s command on the terminal, you can save the information in
a file, 1ist, by using a special symbol, > (the right chevron character on your keyboard):

$ 1s > list
$ Prompt returns—no display on terminal

You see nothing on the terminal except the return of the prompt. The shell is at work here. It has a
mechanism of redirecting any output, normally coming to the terminal, to a disk file. To check
whether the shell has actually done the job, use the cat command with the filename as argument:

Getting Started 15 '

1.4.13 Programming with the Shell
The system also features a programming facility. You can assign a value to a variable at the prompt:

$ x=5 No spaces on either side of =

$

and then evaluate the value of this variable with the echo command and a $-prefixed variable
name:

$ echo $x A $§ required during evaluation
5

Apart from playing with variables, UNIX also provides control structures like conditionals and
loops, and you'll see a great deal of that in later chapters.

1.4.14 exit: Signing Off

So far, what you have seen is only a small fragment of the UNIX giant, though you have already
been exposed to some of its key features. Most of these commands will be considered in some detail
in subsequent chapters, and it’s a good idea to suspend the session for the time being. You should
use the exit command to do that:

$ exit
Togin:

Alternatively, you may be able to use [Cirl-d] (generated by pressing the [Ceri] key and the character
d on the keyboard) to quit the session. The Togin: message confirms that the session has been
terminated, thus making it available for the next user.

MNote: Depending on how your environment has been set up, you may not be able to use [Cirl-d] to exit
the session. If that happens, try the Togout command, and if that fails too, use the exit command. This
command will always work.

Caution: Make sure that you log out after your work is complete. If you don't do that, anybody can get
hold of your terminal and continue working using your user-id. She may even remove your files! The
login prompt signifies a terminated session, so don't leave your place of work until you see this prompt.

1.5 HOW IT ALL CLICKED

Untl UNIX came on the scene, operating systems were designed with a particular machine in
mind. They were invariably written in a low-level language (like assembler, which uses humanly
unreadable code). The systems were fast but were restricted to the hardware they were designed
tor. Programs designed for one system simply wouldn’t run on another. That was the status of the
computer industry when Ken Thompson and Dennis Ritchie, of AT&T fame, authored the UNIX
system.

Getting Started 17 I

Mote: The UNIX trademark is owned by The Open Group.

1.5.3 The Internet

Even before the advent of SVR4, big things were happening in the U.S. Defense Department.
DARPA, a wing of this department, engaged several vendors to develop a reliable communication
system using computer technology. Through some brilliant work done by Vinton Cerf and Robert
Kahn, DARPA’'s ARPANET network was made to work using packet-switching technology. In this
scenario, data is split into packets, which can take different routes and yet be reassembled in the
right order. That was the birth of TCP/IP—a set of protocols (rules) used by the Internet for
communication.

DARPA commissioned UCB to implement TCP/IP on BSD UNIX. ARPANET converted to TCP/
IP in 1983, and in the same year, Berkeley released the first version of UNIX which had TCP/IP
built-in. The computer science research community were all using BSD UNIX, and the network
expanded like wild fire. The incorporation of TCP/IP into UNIX and its use as the basis of
development were two key factors in the rapid growth of the Internet (and UNIX).

1.5.4 The Windows Threat

In the meantime, however, Microsoft was making it big with Windows—a graphical user interface
(GUI) that uses the mouse rather than arcane and complex command options to execute a job.
Options could be selected from drop-down menu boxes and radio buttons, which made handling
some of the basic operating system functions easier. Windows first swept the desktop market (with
Windows 3.1/95/98) and then made significant inroads into the server market (with
Windows N'T/2000) which had for long been dominated by UNIX.

When UNIX badly needed a Windows-type interface for its survival, the Massachusetts Institute
of Technology (MIT) introduced X Window—the first windowing system for UNIX. X Window
has many of the important features of Microsoft Windows plus a lot more. Every flavor of UNIX
now has X along with a host of other tools that can not only handle files and directories but also
update the system'’s configuration files.

Note: All said and done, the power of UNIX is derived from its commands and their multiple options. No
Gl tool can ever replace the find command that uses elaborate file attribute-matching schemes to
locate files.

1.6 LINUX AND GNU

Although UNIX finally turned commercial, Richard Stallman and Linus Torvalds had different
ideas. Torvalds is the father of Linux, the free UNIX that has swept the computer world by storm.
Stallman runs the Free Software Foundation (formerly known as GNU—a recursive acronym

that stands for “GNU’s Not Unix"!). Many of the important Linux tools were written and supplied
free by GNU.

I 18 UNIX: Concepts and Applications

Linux is distributed under the GNU General Public License which makes it mandatory for
developers and sellers to make the source code public. Linux is particularly strong in networking
and Internet features, and is an extremely cost-effective solution in setting up an Internet server or
a local internet. Today, development on Linux is carried out at several locations across the globe at
the behest of the Free Software Foundation.

The most popular GNU/Linux flavors include Red Hat, Caldera, SuSE, Debian and Mandrake.
These distributions, which are shipped on multiple CD-ROMs, include a plethora of software—
from C and C+ + compilers to Java, interpreters like perl, python and tcl, browsers like Netscape,
Internet servers, and multimedia software. Much of the software can also be downloaded free from
the Internet. All the major computer vendors (barring Microsoft) have committed to support Linux,
and many of them have ported their software to this platform. This book also discusses Linux.

1.7 CONCLUSION

With the goal of building a comfortable relationship with the machine, Thomson and Ritchie
designed a system for their own use rather than for others. They could afford to do this because
UNIX wasn’tinitially developed as a commercial product, and the project didn’t have any predefined
objective. They acknowledge this fact too: “We have not been faced with the need to satisfy someone
else’s requirements, and for this freedom we are grateful.”

UNIX is a command-based system, and you have used a number of them already in the hands-on
session. These commands have varied usage and often have a large number of options and
arguments. Before we take up each UNIX subsystem along with its associated commands, you
need to know more about the general characteristics of commands and the documentation associated
with them. The next chapter addresses this issue.

A computer needs an operatfing system to provide all programs with essential services that
involve use of the machine’s resources. UNIX is also an operating system but it has more
features than is expected out of an operating system.

You enter o UNIX system by entering a username, assigned by the system administrator, and a
password. You terminate a session by using fhe exit command or pressing [Cirl-d].

You can enter any legitimate command at the prompt. The prompt is produced by the shell, o
program that constantly runs at the terminal as long os the user is logged in.

The 1s command displays all filenames in a directory. The ps command shows the processes
running in the system.

You can use the * to capture a number of filenames with a simple paottern. The > symbol is used
fo save the output coming on the screen in o file, while | feeds the output of one command as
input fo another.

UNIX was developed at AT&T Bell Laborotories by Ken Thempson and Dennis Ritchie. It was
finally written in C. Notable work was also done at Berkeley. AT&T introduced System V Release
4 {SVR4] to merge their own version, Berkeley and other variants.

Getting Started 19 I

All UNIX flavors today offer a graphical user interface (GUI) in the X Window system. But the
strength of UNIX lies in its commands and options.

Linux is a UNIX implementation that is constantly growing with contributions from the Free
Software Foundation (formerly, GNU).

—t e med sl e
(5 T U N G

) ed ol

o LN o

it e el sl el

Test Your Understanding

Every character has a value associated with it. What is it called?

Why is the password string not displayed on the terminal?

The interacts with the hardware and the interacts with the user.

Name the commands you used in this chapter to display (i) filenames, (i) processes, [iii) users.

Enter this sequence: > user.1st. Note what happens. Repeat the process by removing the
space after the >. Does it make any difference?

Enter this command sequence: 1s | we -1. What do you think the output represents?

Enter the two commands: echo * and 1s. What do you think echo did?

Enter these commands: echo "$SHELL" and echo '$SHELL'. What difference do you notice?
A program is synonymous with a process. True or False?

Who are the principal architects of the UNIX operating system?

Why is UNIX more portable than other operating systems?

What does X/OPEN represent? Who owns the UNIX trademark today?

Name some of the contributions made by Berkeley in the development of UNIX,

What is the windowing system of UNIX known as?

What is the role of the Free Software Foundation in the development of Linux2 Who developed
the Linux kernel?

Flex Your Brain

Operating systems like UNIX provide services both for programs and users. Explain.
What does a program do when it needs to read a file?

When you log in, a program starts executing at your terminal. What is this program known as?
Name four types of this program that are available on a system.

What exactly happens when you enter this sequence: 1s > 1ist?

Aftempt the variable assignment x=10 by providing a space on either end of the =. Why doesn't
it work?

Run the following commands and then invoke 1s. What do you conclude?

echo = README/Enter/
echo > readme/Enter|

Enter the following commands and note your observations: (i) who and tty (ii) ps and echo $$%

I 20 UNIX: Concepts and Applications

1.8

1.9

1.10
1.11
1.12

Name the three commands that you would try in sequence to log yourself out of the system.
Which one among them will always work?

What is the significance of your user-id2 Where in the system is the name used?

What is the one thing that is common to directories, devices, terminals and printers?
Name some of the duties of the system administrator that you have encountered so for.
What are the two schools of UNIX thot initially guided its development?

l_zg UNIX: Concepts and Applications

¢ The importance of the POSIX and Single UNIX Specification standards.

« How to use the man documentation in an effective way and interpret the symbols used.
¢ The use of keyboard sequences to restore normal operation when commands don’t work
properly.

2.1 THE UNIX ARCHITECTURE

The entire UNIX system is supported by a handful of essentially simple, though somewhat abstract
concepts. The success of UNIX, according to Thompson and Ritchie, “lies not so much in new
inventions but rather in the full exploitation of a carefully selected set of fertile ideas, and especially
in showing that they can be keys to the implementation of a small and yet powerful operating
system.” UNIX is no longer a small system, but it certainly is a powerful one. Before we examine
the features of UNIX, we need to understand its software architecture—its foundation.

2.1.1 Division of Labor: Kernel and Shell

Foremost among these “fertile ideas” is the division of labor between two agencies—the kernel and
shell. The kernel interacts with the machine’s hardware, and the shell with the user. You have seen
both of them in action in the hands-on session though the kernel wasn’t mentioned by name.
Their relationship is depicted in Fig. 2.1.

The kernel is the core of the operating system—a collection of routines mostly written in C. It is
loaded into memory when the system is booted and communicates directly with the hardware.
User programs (the applications) that need to access the hardware (like the hard disk or terminal)
use the services of the kernel, which performs the job on the user’s behalf These programs access
the kernel through a set of functions called system calls, which are taken up shortly.

Apart from providing support to user programs, the kernel has a great deal of housekeeping to do. It
manages the system’s memory, schedules processes, decides their priorities, and performs other tasks
which you wouldn’t like to bother about. The kernel has to do a lot of this work even if no user program
is running, It is often called #ke operating system—a program’s gateway to the computer’s resources.

Computers don’t have any inherent capability of translating commands into action. That requires
a command interpreter, a job that is handled by the “outer part” of the operating system—the
shell. It is actually the interface between the user and kernel. Even though there’s only one kernel
running on the system, there could be several shells in action—one for each user who is logged in.

When you enter a command through the keyboard, the shell thoroughly examines the keyboard
input for special characters. If it finds any, it rebuilds a simplified command line, and finally
communicates with the kernel to see that the command is executed. You have already seen the
shell in action when you used the > (1.4.10) and | (1.4.12) symbols. As a simpler example of how
the shell examines and tampers with our input, consider this echo command which has lots of
spaces between the arguments:

$ echo Sun Solaris
Sun Solaris

ﬂ UNIX: Concepts and Applications

2.1.2 The File and Process

Two simple entities support the UNIX system—the file and process—and Kaare Chnstian (The
UNIX Operating System, John Wiley) detects two powerful illusions in them: “Files have places
and processes have life.” Let's briefly examine these two abstractions.

A file is just an array of bytes and can contain virtually anything. It is also related to another file by
being part of a single hierarchical structure. So you should be able to locate a file with reference to
a predetermined place. Further, you as user can also be “placed” at a specific location in this hierarchy
(the file system), and you can also “move” from one place to another. This real-life model makes
the UNIX file system easily comprehensible.

UNIX doesn'’t really care to know the type of file you are using. It considers even directories and
devices as members of the file system. The dominant file type is text, and the behavior of the system
is mainly controlled by text files. UNIX provides a vast array of text manipulation tools that can
edit these files without using an editor. The file system, its attributes and text manipulation tools
are discussed in several chapters.

The second entity is the process, which is the name given to a file when it is executed as a program.
You can say that a process is simply the “time image” of an executable file. Like files, processes also
belong to a separate hierarchical tree structure. We also treat processes as living organisms which
have parents, children and grandchildren, and are born and die. UNIX provides the tools that
allow us to control processes, move them between foreground and background, and even kill them.
The basics of the process management system are discussed in Chapter 9.

2.1.3 The System Calls

The UNIX system—comprising the kernel, shell and applications—is written in C. Though there
are over a thousand commands in the system, they all use a handful of functions, called system calls,
to communicate with the kernel. All UNIX flavors have one thing in common: They use the same
system calls. These system calls are described in the POSIX specification (2.3). If an operating
system uses different system calls, then it won’t be UNIX. The reason why Linux can’t replace
UNIX is that Linux uses the same system calls; Linux is UNIX.

A typical UNIX command writes a file with the write system call without going into the innards
that actually achieve the write operation. Often the same system call can access both a file and a
device; the open system call opens both. These system calls are built into the kernel, and interaction
through them represents an efficient means of communication with the system. This also means

that once software has been developed on one UNIX system, it can easily be ported to another
UNIX machine.

C programmers on a Windows system use the standard library functions for everything. You can't
use the write system call on a Windows system; you’ll need to use a library function like fprintf
for the purpose. In contrast, the C programmer in the UNIX environment has complete access to
the entire system call library as well as the standard library functions. Chapters 23 and 24 deal with
the basic system calls that you need to know to program in the UNIX environment.

The UNIX Architecture and Command Usage ﬁ

2.2 FEATURES OF UNIX

UNIX is an operating system, so it has all the features an operating system is expected to have.
However, UNIX also looks at a few things differently and possesses features unique to itself. The
following sections present the major features of this operating system.

2.2.1 UNIX: A Multiuser System

From a fundamental point of view, UNIX is a multiprogramming system; it permits multiple
programs to run and compete for the attention of the CPU. This can happen in two ways:

o Multiple users can run separate jobs,
» A single user can also run multiple jobs.

In fact, you'll see several processes constantly running on a UNIX system. The feature of multiple
users working on a single system often baffles Windows users. Windows is essentially a single-user
system where the CPU, memory and hard disk are all dedicated to a single user. In UNIX, the
resources are actually shared between all users; UNIX is also a multiuser system. Multiuser
technology is the great socializer that has time for everyone.

For creating the illusory effect, the computer breaks up a unit of time into several segments, and
each user is allotted a segment. So at any point in time, the machine will be doing the job of a
single user. The moment the allocated time expires, the previous job is kept in abeyance and the
next user’s job is taken up. This process goes on until the clock has turned full-circle and the first
user’s job is taken up once again. This the kernel does several times in one second and keeps all
ignorant and happy.

2.2.2 UNIX: A Multitasking System Too

A single user can also run multiple tasks concurrently; UNIX is a multitasking system. It is usual
for a user to edit a file, print another one on the printer, send email to a friend and browse the
World Wide Web—all without leaving any of the applications. The kernel is designed to handle a
user’s multiple needs.

In a multitasking environment, a user sees one job running in the foreground; the rest run in the
background. You can switch jobs between background and foreground, suspend, or even terminate
them. Programmers can use this feature in a very productive way. You can edit a C program and
then suspend it to run the compiler; you don’t have to quit the editor to do that. This feature is
provided by most shells (except the original Bourne shell).

Note: Today, we have machines with multiple CPUs that make it possible to actually earmark an entire
processor for a single program (in a single-user and single-tasking situation).

2.2.3 The Building-Block Approach

The designers never attempted to pack too many features into a few tools. Instead, they felt “small
is beautiful,” and developed a few hundred commands each of which performed one simple job

ﬁ UNIX: Concepts and Applications

only. You have already seen how two commands (1s and we) were used with the | (pipe) to count
the number of files in your directory (1.4.12). No separate command was designed to perform the
job. The commands that can be connected in this way are called filters because they filter or
manipulate data in different ways.

It's through pipes and filters that UNIX implements the small-is-beautiful philosophy. Today,
many UNIX tools are designed with the requirement that the output of one tool be used as input
to another. That’s why the architects of UNIX had to make sure that commands didn’t throw out
excessive verbiage and clutter the output—one reason why UNIX programs are not interactive. If
the output of the 1s command contained column headers, or if it prompted the user for specific
information, this output couldn’t have been used as useful input to the we command.

By interconnecting a number of tools, you can have an large number of combinations of their
usage. That’s why it's better for a command to handle a specialized function rather than solve
multple problems. Though UNIX started with this concept, it was somewhat forgotten when tools
were added to the system later.

2.2.4 The UNIX Toolkit

By one definition, UNIX represents the kernel, but the kernel by itself doesn’t do much that can
benefit the user. To properly exploit the power of UNIX, you need to use the host of applications
that are shipped with every UNIX system. These applications are quite diverse in scope. There are
general-purpose tools, text manipulation utilities (called filters), compilers and interpreters,
networked applications and system administration tools. You'll also have a choice of shells.

This is one area that's constantly changing with every UNIX release. New tools are being added
and the older ones are being removed or modified. The shell and utilities form part of the POSIX
specification. There are open-source versions for most of these utilities, and after reading Chapter 22,
you should be able to download these tools and configure them to run on your machine.

2.2.5 Pattern Matching

UNIX features very sophisticated pattern matching features. You listed the chapters of the text
(1.4.9) by using the 1s command with an unusual argument (chap*} instead of explicitly specifying
all filenames. The * is a special character used by the system to indicate that it can match a number
of filenames. If you choose your filenames carefully, you can use a simple expression to access a
whole lot of them.

The * (known as a metacharacter) isn’t the only special character used by the UNIX system; there
are several others. UNIX features elaborate pattern matching schemes that use several characters
from this metacharacter set. The matching isn’t confined to filenames only. Some of the most
advanced and useful tools also use a special expression called a regular expression that is framed
with characters from this set. This book heavily emphasizes the importance of regular expressions,
and shows how you can perform complex pattern matching tasks using them.

The UNIX Architecture and Command Usage 27 I

2.2.6 Programming Facility

The UNIX shell is also a programming language; it was designed for a programmer, not a casual
end user. It has all the necessary ingredients, like control structures, loops and variables, that establish
it as a powerful programming language in its own right. These features are used to design
shell scripts—programs that can also invoke the UNIX commands discussed in this text.

Many of the system’s functions can be controlled and automated by using these shell scripts. If you
intend taking up system administration as a career, you'll have to know the shell’s programming
features very well. Proficient UNIX programmers seldom take recourse to any other language
(except perl) for text manipulation problems. Shell programming is taken up in Chapters 14 and 21.

2.2.7 Documentation

UNIX documentation is no longer the sore point it once was. Even though it's sometimes uneven,
at most times the treatment is quite lucid. The principal online help facility available is the man
command, which remains the most important reference for commands and their configuration
files. Thanks to O'Reilly & Associates, one can safely say that there’s no feature of UNIX on which
a separate textbook is not available. UNIX documentation and the man facility are discussed later
in the chapter.

Apart from the online documentation, there’s a vast ocean of UNIX resources available on the
Internet. There are several newsgroups on UNIX where you can fire your queries in case you are
stranded with a problem—be it a problem related to shell programming or a network configuration
issue. The FAQ (Frequently Asked Questions)—a document that addresses common problems—
is also widely available on the Net. Then there are numerous articles published in magazines and
journals and lecture notes made available by universities on their Web sites. UNIX is easily
tamed today.

2.3 POSIX AND THE SINGLE UNIX SPECIFICATION

Dennis Ritchie’s decision to rewrite UNIX in C didn’t quite make UNIX very portable. UNIX
fragmentation and the absence of a single conforming standard adversely affected the development
of portable applications. First, AT&T created the System V Interface Definition (SVID). Later, X/
Open (now The Open Group), a consortium of vendors and users, created the X/Open Portability
Guide (XPG). Products conforming to this specification were branded UNIX95, UNIX98 or
UNIXO03 depending on the version of the specification.

Yet another group of standards, the Portable Operating System Interface for Computer Environments
(POSIX), were developed at the behest of the Institution of Electrical and Electronics Engineers
(IEEE). POSIX refers to operating systems in general, but was based on UNIX. Two of the most-
cited standards from the POSIX family are known as POSIX.] and POSIX.2. POSIX.1 specifies

the C application program interface—the system calls. POSIX.2 deals with the shell and utilities.

In 2001, a joint initiative of X/Open and IEEE resulted in the unification of the two standards.
This is the Single UNIX Specification, Version 3 (SUSV3). The “write once, adopt everywhere”
approach to this development means that once software has been developed on any POSIX-

The UNIX Architecture and Command Usage «ﬂ

When you issue a command, the shell searches this list in the sequence specified to locate and execute
it. Note that this list also includes the current directory indicated by a singular dot at the end. The
following message shows that the netscape command is not available in any of these directories:

$ netscape
ksh: netscape: not found

The Korn shell is running here and prints the message after failing to locate the file. This doesn’t
in any way confirm that netscape doesn’t exist on this system; it could reside in a different directory.
In that case we can still run it

e by changing the value of PATH to include that directory.
e by using a pathname (like /usr/local/bin/netscape if the command is located in
Jusr/iocal/bin).
Windows users also use the same PATH variable to specity the search path, except that Windows

uses the ; as the delimiter instead of the colon. We have more to say about pathnames in Chapter
4 and we'll learn to change PATH in Chapter 10.

Note: The essential UNIX commands for general use are located in the directories /bin and /usr/bin.
In Solaris, they are all in /usr/bin.

2.5 INTERNAL AND EXTERNAL COMMANDS

Since 1s is a program or file having an independent existence in the /bin directory (or fusr/bin),
it is branded as an external command. Most commands are external in nature, but there are some
which are not really found anywhere, and some which are normally not executed even if they are
in one of the directories specified by PATH. Take for instance the echo command:

$ type echo
echo is a shell builtin

eche isn’t an external command in the sense that, when you type echo, the shell won’t look in its
PATH to locate it (even if it is there in /bin). Rather, it will execute it from its own set of built-in
commands that are not stored as separate files. These built-in commands, of which echo is a member,
are known as internal commands.

You must have noted that it’s the shell that actually does all this work. This program starts running
for you when you log in, and dies when you log out. The shell is an external command with a
difference; it possesses its own set of internal commands. So if a command exists both as an internal
command of the shell as well as an external one (in /bin or /usr/bin), the shell will accord top
priority to its own internal command of the same name.

This is exactly the case with echo, which is also found in /bin, but rarely ever executed because the
shell makes sure that the internal echo command takes precedence over the external. We'll take up
the shell in detail later.

The UNIX Architecture and Command Usage

If you use a command with a wrong option, the shell locates the command all right, but the command
this time finds the option to be wrong:

$ 1s -z note
Is: illegal option -- z Message from 1s, not shell
usage: 1s -1RaAdCxmnlogrtucpFbgisfL [files]

The above message has been generated by the command, and not by the shell. 1s does have a large
number of options (over 20), but it seems that -z is not one of them. Many commands provide the
right syntax and options to use when you use them wrongly.

What you need to keep in mind is something that beginners often forget—the necessity of providing
spaces between the command and argument. If you have used DIR/P instead of DIR /P in DOS,
don’t expect UNIX to be equally accommodating:

$ 1s-1
bash: 1s-1: command not found

Options can normally be combined with only one - sign, i.e., instead of using
Is -1 -a -t
you might as well use
1s -lat Same as1s -1 -a -t

to obtain the same output. This facility reduces your typing load, which becomes significant when
you use commands with several options. The command parses (breaks up) the option combination
into separate options.

Because UNIX was developed by people who had their own ideas as to what options should look
like, there will invariably be exceptions to whatever rules we try to formulate. Some commands
won't let you combine options in the way you did just now. There are some that use + as an option
prefix instead of -. Some even use the =! Let this not deter you; you would have already built up a
lot of muscle before you take on these commands.

2.6.2 Filename Arguments

Many UNIX commands use a filename as argument so the command can take input from the file.
If a command uses a filename as argument at all, it will generally be its last argument—and after
all options. It’s also quite common to see many commands working with multiple filenames as
arguments;

1s -lat chap0l chap02 chap03
cp chap01 chap02 progs cp copies files
rm chap01 chap02 rm removes files

The command with its arguments and options is known as the command line. This line can be
considered complete only after the user has hit [Enter]. The complete line is then fed to the shell as
its input for interpretation and execution.

E% UNIX: Concepts and Applications

2.6.3 Exceptions

There are, of course, exceptions to the general syntax of commands mentioned above. There are
commands (pwd) that don’t accept any arguments, and some (who) that may or may not be specified
with arguments. The 1s command can run without arguments (1s), with only options (1s -1),
with only filenames (1s chap01 chap02), or using a combination of both (1s -1a chap01 chap02).
The word option turns out to be a misnomer in some instances; some commands compulsorily
have to use one (cut).

Later on, you'll find that the arguments can take the form of an expression (in grep), a set of
instructions (in sed), or a program (in awk and per1). You can’t really have a catch-all syntax that
works for all commands, the syntax pertaining to a specific command is best taken from the UNIX
manual. The syntax for some commands have been explicitly specified in this book.

Note: C programmers and shell scripters need to count the number of arguments in their programs. It
helps to be aware at this stage that there are some characters in the command line that are not really
arguments—the |, > and <, for instance. In Chapter 8, we'll make an amazing discovery that in the
command line who > user.txt, user.txt is not an argument to who!

2.7 FLEXIBILITY OF COMMAND USAGE

The UNIX system provides a certain degree of flexibility in the usage of commands. A command
can often be entered in more than one way, and if you use it judiciously, you can restrict the number
of keystrokes to a minimum. In this section, we'll see how permissive the shell is to command usage.
2.7.1 Combining Commands

So far, you have been executing commands separately; each command was first processed and
executed before the next could be entered. Also, UNIX allows you to specify more than one command
in the command line. Each command has to be separated from the other by a ; (semicolon):

wc note ; 1s -1 note

When you learn to redirect the output of these commands (8.5.2), you may even like to group them
together within parentheses:

(wc note ; 1s -1 note) > newlist

The combined output of the two commands is now sent to the file newlist. Whitespace is provided
here only for better readability. You might reduce a few keystrokes like this:

(we note;ls -1 note)>newlist

When a command line contains a semicolon, the shell understands that the command on each
side of it needs to be processed separately. The ; here is known as a metacharacter, and you'll come
across several metacharacters that have special meaning to the shell.

I 36 UNIX: Concepts and Applications

User Commands we(l)
NAME
wc - display a count of lines, words and characters in a file
SYNOPSIS
we [-c|-m | -C] [-w] [file...]
DESCRIPTION

The wc utility reads one or more input files and, by
default, writes the number of newline characters, words and
bytes contained in each input file to the standard output.
The utility also writes a total count for all named files,
if more than one input file is specified.

wc considers a word to be a non-zero-length string of char-
acters delimited by white space (for example, SPACE, TAB).
See iswspace(3C) or isspace(3C).

OPTIONS
The following options are supported:
-C Count bytes.
-m Count characters.
-C Same as -m.
-1 Count lines.
-w Count words delimited by white space characters or new

Tine characters. Delimiting characters are Extended
Unix Code (EUC) characters from any code set defined
by iswspace().
If no option is specified the default is -lwc (count lines,
words, and bytes.)
OPERANDS
The following operand is supported:
file A path name of an input file. If no file operands are
specified, the standard input will be used.
USAGE
See largefile(5) for the description of the behavior of wc when
encountering files greater than or equal to 2 Gbyte (2 **31 bytes).
EXIT STATUS
The following exit values are returned:

0 Successful completion.
=() An error occurred.
SEE ALSO
cksum(1), isspace(3C), iswalpha(3C), iswspace(3C),

setlocale(3C), attributes(5), environ(5), Targefile(5)

Fig. 2.2 man page for we (Solaris)

I 38 UNIX: Concepts and Applications

man locates its argument from the NAME line of all man pages. nawk is a “newer” version of awk
(has been new for a long time) that is generally found on all modern UNIX systems. Once you
know that awk is a processing language, you can use man awk to view its detailed documentation.
Note that both awk and nawk are found in Section 1. There’s a separate chapter in this textbook that
discusses awk.

Wanting to know what a command does is one thing, but to find out the commands and files
associated with a keyword is quite another. What is FTP? Let’s use the apropos command this time:

% apropos FTP

ftp ftp (1) - file transfer program

ftpd in.ftpd (1m) - file transfer protocol server

ftpusers ftpusers (4) - file listing users to be disallowed ftp login
privileges

in.ftpd in.ftpd (1m) - file transfer protocol server

netrc netrc (4) - file for ftp remote login data

apropos lists the commands and files associated with FTP—the protocol used to transfer files
between two machines connected in a network. There are two commands here, ftp and in. ftpd,
who cooperate with each other for effecting file transfer. There are also two text files, ftpusers and
netrc (actually, .netrc), that are looked up by these commands for authenticating users. Don’t
worry if you don’t understand all this now; we still have some way to go before we take on FTP

The whatis command is also available on many UNIX systems. man uses the -f option to emulate
whatis behavior. The command also lists one-liners for a command:

% whatis cp
cp cp (1) - copy files

This is the command you have to use to copy a file (or directory).

Mote: If you don't have the apropos command on your system, you can use man -k. You can also use
man -f in place of whatis. The commands search a database that is built separately from man pages.
It may or may not be installed on your system. apropos and whatis are not included in the POSIX
specification, but man -k is (but not -f).

LINUX: The --help Option

Some commands have just too many options, and sometimes a quick lookup facility is what you need.
Most Linux commands offer the --help option that displays a compact listing of all options. You can
spot the find option you are looking for by using this:

$ find --help

Usage: find [path...] [expression]

default path is the current directory; default expression is -print

expression may consist of:

operators (decreasing precedence; -and is implicit where no others are given):
(EXPR) ! EXPR -not EXPR EXPR1 -a EXPR2 EXPR1 -and EXPR2
EXPR1 -o EXPRZ EXPR1 -or EXPRZ EXPR1 , EXPRZ

options (always true): -daystart -depth -follow --help

The UNIX Architecture and Command Usage 39 I

-maxdepth LEVELS -mindepth LEVELS -mount -noleaf --version -xdev
tests (N can be +N or -N or N): -amin N -anewer FILE -atime N -cmin N
-cnewer FILE -ctime N -empty -false -fstype TYPE -gid N -group NAME
-ilname PATTERN -iname PATTERN -inum N -ipath PATTERN -iregex PATTERN
-links N -1name PATTERN -mmin N -mtime N -name PATTERN -newer FILE
-nouser -nogroup -path PATTERN -perm [+-]MODE -regex PATTERN
-size N[bckw] -true -type [bcdpfls] -uid N -used N -user NAME
-xtype [bedpfls]
actions: -exec COMMAND ; -fprint FILE -fprint0 FILE -fprintf FILE FORMAT
-ok COMMAND ; -print -print0 -printf FORMAT -prune -ls

A Linux command invariably offers far more options than its UNIX counterpart. You'll find this lookup
facility quite useful when you know the usage of the options but can't recollect the one you require.

2.11 WHEN THINGS GO WRONG

Terminals and keyboards have no uniform behavioral pattern. Terminal settings directly impact
keyboard operation, and you may sometimes need to check the value of the TERM variable. We'll
discuss TERM later, but as of now, you should at least be able to wriggle out of some common traps.
You must know which keys to press when things don’t quite work as expected.

Backspacing Doesn't Work Consider that you misspelled passwd (a legitimate command) as
password, and when you pressed the backspace key to erase the last three characters, you saw this:

$ password™H H"H

Backspacing is not working here; that's why you see the symbol ~H every time you press the key.
This often happens when you log on to a remote machine whose terminal settings are different
from your local one. In this case you should try these two key sequences; one of them should see

you through:
[Ctrl-h] or [Delete] The erase character

Killing a Line If the command line contains many mistakes, you could prefer to kill the line
altogether without executing it. In that case, use

[Ceri-u] The line-kill character

The line-kill character erases everything in the line and returns the cursor to the beginning of
the line.

Interrupting a Command ~ Sometimes, a program goes on running for an hour and doesn’t seem
to complete. You can interrupt the program and bring back the prompt by using either of the
two sequences:

[Ctrl-c] or [Delete] The interrupt character

This is an important key sequence, and in this book, you'll often be advised to use the interrupt key.
Note, however, that if [Delete] works as the erase character on your machine, it can’t also be the
interrupt character at the same time.

EM UNIX: Concepts and Applications

Terminating a Command’s Input You know that the cat command is used with an argument
representing the filename (1.4.10). What happens if you omit the filename and simply press [Enter]?

$ cat/Enter]

Nothing happens; the command simply waits for you to enter something. Even if you do some text
entry, you must know how to terminate your input. For commands that expect user input, enter a
[Ctri-d] to bring back the prompt:

$ cat
[Cerl-d] The end-of-file or eof character
$

This is another important key sequence; we'll often refer to [Ctrl-d] as the eof or end-of-file character.
Sometimes pressing the interrupt key also works in this situation.

The Keyboard is Locked ~ When this happens, you won’t be able to key in anything. It could
probably be due to accidental pressing of the key sequence [Ctri-s]. Try using [Ctrl-g] to release the
lock and restore normal keyboard operation. These two sequences are actually used by the system
to control the flow of command output.

At times, you may consciously like to use [Ctrl-s] and [Cirl-g]. If the display from a command is
scrolling too fast for you to see on the terminal, you can halt the output temporarily by pressing
[Ctrl-s]. To resume scrolling, press [Cirl-g]. With modern hardware where the output scrolls off
very fast, this facility is now practically ineffective, but it pays to know what they do because
inadvertent pressing of [Ctrl-s] can lock your terminal.

The [Enter] Key Doesn't Work This key is used to complete the command line. If it doesn’t work,
you can use either [Cirl-j] or [Ctrl-m]. These key sequences generate the linefeed and carriage
return characters, respectively.

The Terminal Behaves in an Erratic Manner Your terminal settings could be disturbed; it may
display everything in uppercase or simply garbage when you press the printable keys. Try using the
command stty sane to restore sanity. Since the [Enter] key may not work either in these situations,

use [Ctri-j] or [Ctrl-m] to simulate [Enter].

These key functions are summarized in Table 2.2, We have provided names to some of these key
sequences (like eof and interrupt), but don’t be surprised if you find some of them behaving
differently on your system. Much of UNIX is configurable by the user, and you’ll learn later to use
the stty command to change these settings. If you have problems, seck assistance of the system
administrator.

Tip: At this early stage, it may not be possible for you to remember all of these key sequences. But do
keep these two keys in mind: [Cirl-c], the interrupt character, used to interrupt a running program and
[Ctrl-d], the eof character, used to terminate a program that's expecting input from the terminal. On
machines running Solaris or Linux, [Ctrl-c] can interrupt a command even when it is expecting input.

The UNIX Architecture and Command Usage 'ﬂ-.:?l

Also keep in mind that some UNIX programs (like mai1x) are interactive and have their own set of
internal commands (those understood only by the program). These commands have specific key
sequences for termination. You may not remember them, so try using q, quit, exit or /[Cirl-d]; one
of them might just work.

Table 2.2 Keyboard Commands to Try When Things Go Wrong

Keystroke or Command Function

[Ctri-h] Erases text (The erase character)

[Ctri-c] or [Delete] Interrupts a command (The interrupt character)

[Ctri-d] Terminates login session or a program that expects its input from
the keyboard (The eof character)

[Ctrl-s] Stops scrolling of screen output and locks keyboard

[Ctri-q] Resumes scrolling of screen output and unlocks keyboard

1 Citrl-uf Kills command line without executing it (The line-kill character)

[Cerl-\] Kills running command but creates a core file containing the
memory image of the program (The guit character)

[Crri-z] Suspends process and returns shell prompt; use fg to resume job
(The suspend character)

[Cerl-] Alternative to [Enter]

[Ctrl-m] As above

stty sane Restores terminal to normal status (a UNIX command)

2.12 CONCLUSION

This chapter should prepare you well for the forthcoming tour of UNIX. You can now expect to
encounter UNIX commands used with a wide variety of options and arguments. The man
documentation will be your most valuable help tool and you must develop the habit of looking 1t
up whenever you are stranded with a problem related to command usage. Also, things will go
wrong and keyboard sequences won't sometimes work as expected. So don’t forget to look up
Section 2.11 for remedial action when that happens.

i rar UF |
: The kernel addresses the hardware directly. The shell inferacts with the user. It processes a
. command, scans it for special characters and rebuilds it in a form that the kernel can understand.

- T T——

The shell and applications communicate with the kernel using system calls, which are special
routines built into the kernel.

. The file and process are two basic entities that supporf the UNIX system. UNIX considers everything
t as a file. A process represents a program (a file) in execution.

Several users can use the system fogether (multiuser), and a single user can also run multiplejobs
~eoncurrently(multitask).

T

General-Purpose Utilities 45. l

» The advantage character-based mailers have over graphic programs.

e The significance of the mailbox and mbox in the mailing system.

3.1 cal: THE CALENDAR

You can invoke the cal command to see the calendar of any specific month or a complete year. The
facility is totally accurate and takes into account the leap year adjustments that took place in the
year 1752. Let’s have a look at its syntax drawn from the Solaris man page:

cal [[month] year]

Everything within rectangular brackets is optional, so we are told (2.9.1). So, cal can be used
without arguments, in which case it displays the calendar of the current month:

$ cal
August 2005
Su Mo Tu We Th Fr Sa
1 2 3 456
7 B8 9101112 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

The syntax also tells us that when cal is used with arguments, the month is optional but the year is
not. To see the calendar for the month of March 2006, you need two arguments:

$ cal 03 2006
March 2006
Su Mo Tu We Th Fr Sa
1 2 3 4
5 6 7 8 91011
12 13 14 15 16 17 18
19 20 21 22 23 24 25

26 27 28 29 30 31

You can’t hold the calendar of a year in a single screen page; it scrolls off too rapidly before you can use
[Ctrl-s] to make it pause. To make cal pause in the same way man pauses, use cal with a pager (more
or 1ess) using the | symbol to connect them. A single argument to cal is interpreted as the year:

cal 2003 | more Or use ess instead of more

The | symbol connects two commands (in a pipeline) where more takes input from the cal command.
We have used the same symbol in Chapter 1 to connect the 1s and we commands (1.4.12). You can
now scroll forward by pressing the spacebar, or move back using b.

3.2 date: DISPLAYING THE SYSTEM DATE

The UNIX system maintains an internal clock meant to run perpetually, When the system is shut
down, a battery backup keeps the clock ticking. This clock actually stores the number of seconds

General-Purpose Utilities “]

Note that the formats also optionally use a number to specify the width that should be used when
printing a string or number. You can also use multiple formats in a single printf command. But

then you’ll have to specify as many arguments as there are format strings—and in the right order.

While printf can do everything that echo does, some of its format strings can convert data from
one form to another. Here’s how the number 255 is interpreted in octal (base 8) and hexadecimal
(base 16):

$ printf "The value of 255 is %o in octal and %x in hexadecimal\n" 255 255
The value of 255 is 377 in octal and ff in hexadecimal

The %0 and %x format strings are also used by awk and per1 (and by C) to convert a decimal integer
to octal and hex, respectively; it’s good to know them. Note that we specified 255 twice to represent
the two arguments because it’s the same number that we want to convert to octal and hex.

Note: C language users should note some syntactical differences in printf usage. printf is a function
in C and hence uses the parentheses to enclose its arguments. Moreover, arguments are separated
from one another as well as from the format string by commas. Here's how the previous command line
is implemented as a C statement:

printf("The value of 255 is %o in octal and %x in hexadecimal\n", 255, 255);

The discussion on printf should prepare you well for eventually using the printf function in C, but
remember that this C function uses many format specifiers not used by the UNIX printf command.

3.5 be: THE CALCULATOR

UNIX provides two types of calculators—a graphical object (the xcalc command) that looks like
one, and the text-based be command. The former is available in the X Window system and is quite
easy to use. The other one is less friendly, extremely powerful and remains one of the system’s
neglected tools.

When you invoke be without arguments, the cursor keeps on blinking and nothing seems to happen.
bec belongs to a family of commands (called filters) that expect input from the keyboard when used
without an argument. Key in the following arithmetic expression and then use [Ctri-d] to quit be:

$ bc

12 + 5§

17 Value displayed after computation
[Ctri-d] The eof character

$

be shows the output of the computation in the next line. Start be again and then make multiple
calculations in the same line, using the ; as delimiter. The output of each computation is, however,
shown in a separate line: .

12*12 ; 2732 ~ indicates “to the power of”

144

4294967296 Mazximum memory possible on a 32-bit machine

General-Purpose Utilities

Sending Mail Noninteractively ~ Since we often need to send mail from a shell script, we can use
a shell feature called redirection (8.5) to take the message body from a file and the -s option to
specify the subject:

mailx -s "New System" charlie < message.txt

Though POSIX doesn’t require mailx to support options that copy messages to other people, on
most systems, mailx can be used to send copies using the -c option. Multiple recipients should be
enclosed in quotes:

mailx -s "New System" -c "jpm,sumit" charlie < message.txt

This command sends a message to charlie with copies to jpm and sumit. Now, pay attention to
this: If this command line is placed in a shell script, mail will be sent without user intervention (no
mouse clicks). You can now well understand why UNIX is considered to be a versatile system.

Note: What makes this method of invocation remarkable is that the subject and recipients need not be
known in advance, but can be obtained from shell variables. The message body could come from the
output of another program. You can use this feature to design automated mailing lists.

Tip: You can send mail to yourself also using your own user-id as argument. Mail sent to oneself in this
way serves as a reminder service provided the user is disciplined enough to read all incoming mail
immediately on logging in.

3.8.2 Receiving Mail

All incoming mail is appended to the mailbox. This is a text file named after the user-id of the
recipient. UNIX systems maintain the mailbox in a directory which i1s usually /var/mail
(/var/spool/mail in Linux). charlie’s mail is appended to /var/mail/charlie. By default, mailx
reads this file for viewing received mail.

Referring to the message sent by henry, the shell on charlie’s machine regularly checks his mailbox
to determine the receipt of new mail. If charlie is currently running a program, the shell waits for
program execution to finish before flashing the following message:

You have new mail in fvar/mail/charlie

When charlie logs in, he may also see this message. He now has to invoke the mailx command in
the receiving mode (without using an argument) to see the mail henry has sent him. The system
first displays the headers and some credentials of all incoming mail that’s seill held in the mailbox:

$ mailx

mailx version 5.0 Wed Jan 5 16:00:40 PST 2000 Type ? for help.
“/var/mail/charlie": 5 messages 2 new 5 unread

U 1 henry@jack.hill.com Fri Apr 3 16:38 19/567 ‘"sweet dreams"

U 2 MAILER-DAEMONGjack.h Sat Apr 4 16:33 69/2350 "Warning: could not se"

E UNIX: Concepts and Applications

U 3 MAILER-DAEMON@jack.h Thu Apr 9 08:31 63/2066 "Returned mail: Cannot"
N 4 henry@jack.hill.com Thu Apr 30 10:02 17/515 "Away from work"

>N 5 henry@jack.hill.com Thu Apr 30 10:39 69/1872 "New System"
”

The ? prompt

The pointer (>} is positioned on the fifth message. This is the current message. To view the message
body, charlie has to input either the message number shown in the second column, or press [Enter].
The following message is typically seen on charlie’s screen:

Message 5:

>From henry@saturn.heavens.com Tue Jan 13 10:06:14 2003
Date: Tue, 13 Jan 2003 10:06:13 +0530

From: "henry blofeld" <henry@saturn.heavens.com>

To: charlie@saturn.heavens.com

Subject: New System

The new system will start functioning from next month.
Convert your files by next week - henry

74 QOuitting mailx with q
Saved 1 message in fusersl/home/staff/charlie/mbox

$

As we mentioned before, after a message has been seen by the recipient, it moves from the mailbox

to the mbox, the secondary storage. The name of this file is generally mbox, to be found in the
user’s home directory (where a user is placed on logging in).

Note: All mail handling commands are presurmed to work in a network. That's why the sender’s address
shows @saturn, heavens.com appended. This is the sender’s domain name whose significance is taken
up in Chapter 17.

3.8.3 mailx Internal Commands

Like the pager used by man, the mai1x command supports a number of internal commands (Table 3.2)
that you can enter at the ? prompt. Enter help or a 7 at this prompt to see the list of these commands.

You can see the next message by using a + (or [Enter]), and a - to display the previous message.
Since messages are numbered, a message can also be accessed by simply entering the number
itself:

3 Shows message number 3

Replying to mail The r (reply) command enables the recipient to reply when the sent message is on
display at her terminal. mailx has a way of deducing the sender’s details, and consequently, the r
command is usually not used with an address:

ir

To: henry@saturn.heavens.com Sender’s address automatically inserted
Subject: Re: File Conversion

General-Purpose Utilities

I am already through.
[Ctri-d]
EOT

When charlie invokes the r command, mai1x switches to the sending mode. The rules for replying
to a message are the same as for sending.

Saving Messages Generally, all mail commands act on the current message by default. With the
w command, you can save one or more messages in separate files rather than the default mbox (the
file mbox) used by the system:

w note3 Appends current message to note3
w123 note3 Appends first three messages to note3

In either case, the message is saved without header information. To save messages with headers,
use the s command.

Deleting Mail To delete a message from the mailbox, use the d (delete) command. It simply
marks mail for deletion; the mail actually gets deleted only when quitting mailx.

There’s still a lot to know about email. We need to examine mail headers, and domain names that
are used in email addresses. We must also understand how multimedia files are sent as part of a
mail message. We visit email again in Chapter 17.

Table 3.2 Internal Commands used by mailx

Command Action

+ Prints next message

- Prints previous message

N Prints message numbered N

h Prints headers of all messages

dN Deletes message N (The current message if N is not specified)

ulN Undeletes message N (The current message if N is not specified)

s finame Saves current message with headers in flname ($HOME /mbox if flname is not specified)

w flname Saves current message without headers in flname ($HOME /mbox if fIname is not
specified)

m user Forwards mail to user

rN Replies to sender of message N (The current message if V is not specified)

q Quits mailx program

! emd Runs UNIX command emd

3.9 passwd: CHANGING YOUR PASSWORD

The remaining commands in this chapter relate to our UNIX system, and we’ll first take up the
command that changes the user’s password. In Chapter 1, you have seen how keying in a wrong
password prevents you from accessing the system. If your account doesn’t have a password or has

I'SE UNIX: Concepts and Applications

One of the users shown in the first column is obviously the user who invoked the who command. To
know that specifically, use the arguments am and i with who:

$ who am i
kumar pts/10 Aug 1 07:56 (pc123.heavens.com)

Note: UNIX provides a number of tools (called filters) to extract data from command output for further
processing. For instance, you can use the cut command to extract the first column from the who
output, and then use this list with mailx to send a message to these users. The ability to combine
commands to perform tasks that are not possible to achieve using a single command is what makes
UNIX so different from other operating systems. We'll be combining commands several times in this
text.

3.11 uname: KNOWING YOUR MACHINE'S CHARACTERISTICS

The uname command displays certain features of the operating system running on your machine.
By default, it simply displays the name of the operating system:

$ uname
Sun0s Linux shows Linux

This is the operating system used by Sun Solaris. Linux systems simply show the name Linux.
Using suitable options, you can display certain key features of the operating system, and also the
name of the machine. The output will depend on the system you are using.

The Current Release (-r) Since UNIX comes in many flavors, vendors have customized a number
of commands to behave in the way they want, and not as AT&T decreed. A UNIX command often
varies across versions so much so that you'll need to use the -r option to find out the version of your
operating system:

$ uname -r

5.8 This is SunOS 5.8

This is a machine running SunOS 5.8, the name given to the operating system used by the Solaris
8 environment. If a command doesn’t work properly, it could either belong to a different
“implementation” (could be BSD) or a different “release” (may be 4.0, i.e., System V Release 4 of

AT&T). g

The Machine Name {-n) If your machine is connected to a network, it must have a name (called
hostname). If your network is connected to the Internet, then this hostname is a component of your
machine’s domain name (a series of words separated by dots, like mercury.heavens.com). The -n
option tells you the hostname:

$ uname -n
mercury The first word of the domain name

The same output would be obtained with the hostname command. Many UNIX networking utilities
use the hostname as argument. To copy files from a remote machine named mercury running the
FTP service, you have to run ftp mercury.

General-Purpose Utilities !

LINUX: uname -n may show either the host name (like mercury) or the complete domain name (like
mercury.heavens. com), depending on the flavor of Linux you are using. uname and uname -r display the
operating system name and version number of the kernel, respectively:

$ uname

Linux

$ uname -r

2.4.18-14 Kernel version ts 2.4

The first two numbers of the kernel version (here, 2.4) are something every Linux user must remember.
Before installing software, the documentation may require you to use a kernel that is “at least™ 2.2. The
same software should run on this machine whose kemel version is 2.4.

3.12 tty: KNOWING YOUR TERMINAL

Since UNIX treats even terminals as files, it’s reasonable to expect a command that tells you the
filename of the terminal you are using. It's the tty (teletype) command, an obvious reference to
the device that has now become obsolete. The command is simple and needs no arguments:

§ tty

/dev /pts/10
The terminal filename is 10 (a file named 10) resident in the pts directory. This directory in turn is
under the /dev directory. These terminal names were seen on a Solaris machine; your terminal
names could be different (say, /dev/tty01).

You can use tty in a shell script to control the behavior of the script depending on the terminal it is
invoked from. If a program must run from only one specified terminal, the script logic must use
tty to make this decision.

3.13 stty: DISPLAYING AND SETTING TERMINAL CHARACTERISTICS

Different terminals have different characteristics, and your terminal may not behave in the way
you expect it to. For instance, command interruption may not be possible with [Ceri-¢] on your
system. Sometimes you may like to change the settings to match the ones used at your previous
place of work. The stty command helps straighten these things out; it both displays and changes
settings.

stty uses a very large number of keywords (options that look different), but we'll consider only a
handful of them. The -a (all) option displays the current settings. A trimmed output is presented
below:

$ stty -a

speed 38400 baud; rows = 25; columns = 80; ypixels = 0; xpixels = 0;
intr = “c; quit = *\; erase = *?; kill = "u;

eof = ~d; eol = <undef>; eol2 = <undef>; swtch = <undef>;

start = *q; stop = "s; susp = “z; dsusp = "y;

isig icanon -xcase echo echoe echok -echonl -noflsh

-tostop echoct]l -echoprt echoke -defecho -flusho -pendin iexten

Iso UNIX: Concepts and Applications

The output shows, among other things, the baud rate (the speed) of the terminal—in this case
38,400. It also shows many of the parameters that were discussed in a previous chapter (2.11). The
other keywords take two forms:

o keyword = value

o keyword or -keyword. The - prefix implies that the option is turned off.
The setting intr = “c signifies that [Ctri-¢f interrupts a program. The erase character is [Cerl-h]
and the kill character is [Ctrl-u]. The eof (end-of-file) character is set to [Ctri-d], the same key

sequence that was used with the be (3.5) and mailx (3.8) commands. For commands that accept
input from the keyboard, this key signifies the end of input.

Let’s understand the significance of some of the other keywords and then use stty to change the
settings.

3.13.1 Changing the Settings

Whether Backspacing Should Erase Character (echoe) If you have worked on a number of terminals,
you would have noticed that backspacing over a character sometimes removes it from sight and
sometimes doesn’t. This is decided by the keyword echoe. Since it is set here (no - prefix to it),
backspacing removes the character from display.

You can use the same keyword to reverse this setting. Here you need to prefix a - to the echoe
keyword:

stty -echoe

Backspacing now doesn’t remove a character from sight. This setting is inoperative on some systems.

Entering a FPassword through a Shell Script (echo) The echo setting has to be manipulated to let
shell programs accept a password-like string that must not be displayed on the screen. By default,
the option is turned on, but you can turn it off in this way:

stty -echo Turns off keyboard inpur

With this setting, keyboard entry is not echoed. You should turn it oft after the entry is complete by
using stty echo, which again is not displayed, but makes sure that all subsequent input is.

Changing the Interrupt Key (intr) stty also sets the functions for some of the keys. For instance,
if you like to use [Ctrl-¢] as the interrupt key instead of [Delete], you’ll have to use

stty intr \"c ~and ¢

Here, the keyword intr is followed by a space, the \ (backslash) character, a ~ (caret), and finally
the character c. This is the way stty indicates to the system that the interrupt character is [Cerl-¢].

When you insert control characters into a file, you'll see a * symbol apparently prefixed to the
character. For example, [Ctrl-I] is seen as *1 (or ~L). However, it's actually a single character,
occupying two slots on the terminal; no caret is actually present. However, for using a control
character in an stty setting, you’ll have to use a literal caret preceded by a backslash.

General-Purpose Utilities 5

3.10 Both your local and remote machines use identical versions of UNIX. How do you confirm
whether you are logged on to a remote machine or not?

3.11 How do you determine the erase, kill and eof characters on your system?

3.12 What will you do to ensure that [Cirl-c] interrupts any program? Will it work the next time you
log in?

4

The File System

In this chapter, we begin our study of one of the two pillars that support UNIX—the file system.
UNIX looks at everything as a file and any UNIX system has thousands of files. If you write a
program, you add one more file to the system. When you compile it, you add some more. Files
grow rapidly, and if they are not organized properly, you'll find it difficult to locate them. Just as an
office has separate file cabinets to group files of a similar nature, UNIX also organizes its own files
in directories and expects you to do that as well.

The file system in UNIX is one of its simple and conceptually clean features. It lets users access
other files not belonging to them, but it also offers an adequate security mechanism so outsiders
are not able to tamper with a file’s contents. In this chapter, you'll learn to create directories, move
around within the system, and list filenames in these directories. We'll deal with file attributes,
including the ones related to security, in a later chapter.

r— WHAT YOoU WILL LEARN

¢ The initial categorization of files into three types—ordinary, directory and device.
o The features of a UNIX filename.

o The hierarchical structure containing files and directories, and the parent—child relationship
that exists between them.

o The significance of the home directory and HOME variable.
o Navigate the file system with the ¢d and pwd commands.
o Create and remove directories with mkdir and rmdir.
o The significance of absolute and relative pathnames.

o Use 1sto list filenames in a directory in different formats.

r— TOPICS OF SPECIAL INTEREST
o The significance of the important directories of the UNIX file system from a functional point
of view.

« How It Works: A graphic that shows how mkdir and rmdir affect a directory.

L

The File System gﬁ
4.1 THE FILE

The file is a container for storing information. As a first approximation, we can treat it simply as a
sequence of characters. If you name a file foo and write three characters a, b and c into it, then foo
will contain only the string abc and nothing else. Unlike the old DOS files, a UNIX file doesn’t
contain the eof (end-of-file) mark. A file’s size is not stored in the file, nor even its name. All file

attributes are kept in a separate area of the hard disk, not directly accessible to humans, but only to
the kernel.

UNIX treats directories and devices as files as well. A directory is simply a folder where you store
filenames and other directories. All physical devices like the hard disk, memory, CD-ROM, printer
and modem are treated as files. The shell is also a file, and so is the kernel. And if you are wondering
how UNIX treats the main memory in your system, it’s a file too!

So we have already divided files into three categories:

o Ordinary file—Also known as regular file. It contains only data as a stream of characters,

o Directory file—It's commonly said that a directory contains files and other directories, but
strictly speaking, it contains their names and a number associated with each name.

o Device file—All devices and peripherals are represented by files. To read or write a device, you
have to perform these operations on its associated file.

There are other types of files, but we’ll stick to these three for the time being. The reason why we
make this distinction between file types is that the significance of a file's attributes often depends
on its type. Read permission for an ordinary file means something quite different from that for a
directory. Moreover, you can’t directly put something into a directory file, and a device file isn’t
really a stream of characters. While many commands work with all types of files, some don’t. Fora
proper understanding of the file system you must understand the significance of these files.

4.1.1 Ordinary (Regular) File

An ordinary file or regular file is the most common file type. All programs you write belong to
this type. An ordinary file itself can be divided into two types:

o Text file
« Binary file

A text file contains only printable characters, and you can often view the contents and make sense
out of them. All C and Java program sources, shell and per1 scripts are text files. A text file contains
lines of characters where every line is terminated with the newline character, also known as linefeed
(LF). When you press [Enter] while inserting text, the LF character is appended to every line. You
won't see this character normally, but there is a command (od) which can make it visible.

A binary file, on the other hand, contains both printable and unprintable characters that cover the
entire ASCII range (0 to 255). Most UNIX commands are binary files, and the object code and
executables that you produce by compiling C programs are also binary files. Picture, sound and
video files are binary files as well. Displaying such files with a simple cat command produces
unreadable output and may even disturb your terminal’s settings.

The File System -
4.7 mkdir: MAKING DIRECTORIES

Directories are created with the mkdir (make directory) command. The command is followed by

names of the directories to be created. A directory patch is created under the current directory like
this:

mkdir patch
You can create a number of subdirectories with one mkdir command:
mkdir patch dbs doc Three directories created

So far, simple enough, but the UNIX system goes further and lets you create directory trees with
just one invocation of the command. For instance, the following command creates a directory tree:

mkdir pis pis/progs pis/data Creates the directory tree

This creates three subdirectories—pis and two subdirectories under pis. The order of specifying
the arguments is important; you obviously can’t create a subdirectory before creation of its parent
directory. For instance, you can’t enter

$ mkdir pis/data pis/progs pis
mkdir: Failed to make directory "pis/data"; No such file or directory
mkdir: Failed to make directory "pis/progs"; No such file or directory

Note that even though the system failed to create the two subdirectories, progs and data, it has still
created the pis directory.

Sometimes, the system refuses to create a directory:

$ mkdir test
mkdir: Failed to make directory "test"; Permission denied

This can happen due to these reasons:

o The directory test may already exist.
« There may be an ordinary file by that name in the current directory.

e The permissions set for the current directory don’t permit the creation of files and directories
by the user. You'll most certainly get this message if you try to create a directory in /bin, /etc
or any other directory that houses the UNIX system’s files.

We'll take up file and directory permissions in Chapter 6 featuring file attributes.

4.8 rmdir: REMOVING DIRECTORIES

The rmdir (remove directory) command removes directories. You simply have to do this to remove
the directory pis:

rmdir pis Directory must be empty

E?Z UNIX: Concepts and Applications

Like mkdir, rmdir can also delete more than one directory in one shot. For instance, the three
directories and subdirectories that were just created with mkdir can be removed by using rmdir
with a reversed set of arguments:

rmdir pis/data pis/progs pis

Note that when you delete a directory and its subdirectories, a reverse logic has to be applied. The
tollowing directory sequence used by mkdir is invalid in rmdir:

$ rmdir pis pis/progs pis/data

rmdir: directory "pis": Directory not empty
Have you observed one thing from the error message? rmdir has silently deleted the lowest level
subdirectories progs and data. This error message leads to two important rules that you should
remember when deleting directories:

« You can’tdelete a directory with rmdir unless it 1s empry. In this case, the pis directory couldn’t
be removed because of the existence of the subdirectories, progs and data, under it.

« You can’t remove a subdirectory unless you are placed in a directory which is hierarchically
above the one you have chosen to remove.

The first rule follows logically from the example above, but the highlight on rmdir has significance
that will be explained later. (A directory can also be removed without using rmdir.) To illustrate the
second cardinal rule, try removing the progs directory by executing the command from the same
directory itself:

$ cd progs

§ pwd

/home/kumar/pis/progs

$ rmdir /home/kumar/pis/progs Trying to remove the current directory
rmdir: directory "/home/kumar/pis/progs": Directory does not exist

To remove this directory, you must position yourself in the directory above progs, i.e., pis, and
then remove it from there:

$ cd /home/kumar/pis

$ pwd
/home /kumar/pis
$ rmdir progs

Themkdir and rmdir commands work only in directories owned by the user. Generally, a user is the
owner of her home directory, and she can create and remove subdirectories (as well as regular files)
in this directory or in any subdirectories created by her. However, she normally won't be able to
create or remove files and directories in other users’ directories. The concept of ownership will be
discussed in Section 6.3.

_Hote: A subdirectory can't be removed with rmdir unless it's empty, and one is positioned in its parent
directory or above it. But we can remove a directory without using rmdir also (discussed later).

The File System * 3!

HOW IT WORKS: How Files and Directories are Created and Removed

As mentioned in Section 4.1.2, a file (ordinary or directory) is associated with a name and a number,
called the inode number. When a directory is created, an entry comprising these two parameters is
made in the file's parent directory. The entry is removed when the directory is removed. The same holds
good for ordinary files also. Figure 4.2 highlights the effect of mkdir and rmdir when creating and
removing the subdirectory progs in /home /kumar.

Filenamel Inode Filename| Inode Filename| Inode
Number Number Number
386444 | mkdir progs . i?ggg; rmdir progs . 386444
- 417585 ‘e - 417585
foo | 299770 — P | foo | 499770 | P | teo | 499770
progs | 162112

Fig. 4.2 Directory Entry after mkdir and rmdir

Later in this chapter, we'll discuss the significance of the entries, . and .., that you'll find in every
directory. In this chapter and Chapters 5 and 11, we'll be progressively monitoring this directory for
changes that are caused by some of the file-handling commands.

4.9 ABSOLUTE PATHNAMES

Many UNIX commands use file and directory names as arguments, which are presumed to exist
in the current directory. For instance, the command

cat login.sql

will work only if the file 1ogin.sql exists in your current directory. However, if you are placed in
Jusr and want to access 1ogin.sql in /home/kumar, you can’t obviously use the above command,
but rather the pathname of the file:

cat /home/kumar/login.sql

As stated before, if the first character of a pathname 1s /, the file’s location must be determined with
respect to root (the first /). Such a pathname, as the one above, is called an absolute pathname.
When you have more than one / in a pathname, for each such /, you have to descend one level in
the file system. Thus, kumar is one level below home, and two levels below root.

When you specify a file by using frontslashes to demarcate the various levels, you have a mechanism
of identifying a file uniquely. No two files in a UNIX system can have identical absolute pathnames.
You can have two files with the same name, but in different directories; their pathnames will also
be different. Thus, the file /home/kumar/progs/c2f.pl can coexist with the file
/home /kumar/safe/c2f.pl. '

{-?'d UNIX: Concepts and Applications

4.9.1 Using the Absolute Pathname for a Command

More often than not, a UNIX command runs by executing its disk file. When you specify the date
command, the system has to locate the file date from a list of directories specified in the PATH
variable, and then execute it. However, if you know the location of a particular command, you can
precede its name with the complete path. Since date resides in /bin (or fusr/bin), you can also use
the absolute pathname:

$ /bin/date
Thu Sep 1 09:30:49 IST 2005

Nobody runs the date command like that. For any command that resides in the directories specified
in the PATH variable, you don’t need to use the absolute pathname. This PATH, you'll recall (2.4.1),
invariably has the directories /bin and fusr/bin in its list.

If you execute programs residing in some other directory that isn’t in PATH, the absolute pathname
then needs to be specified. For example, to execute the program less residing in /usr/local/bin,
you need to enter the absolute pathname:

Jusr/local /bin/less

If you are frequently accessing programs in a certain directory, it’s better to include the directory
itself in PATH. The technique of doing that is shown in Section 10.3.

4.10 RELATIVE PATHNAMES

You would have noted that in a previous example (4.8), we didn’t use an absolute pathname to
move to the directory progs. Nor did we use one as an argument to cat (4.9):

cd progs
cat login.sql

Here, both progs and Togin.sql are presumed to exist in the current directory. Now, if progs also
contains a directory scripts under it, you still won't need an absolute pathname to change to
that directory:

cd progs/scripts praogs s in current directory

Here we have a pathname that has a /, bur it is not an absolute pathname because 1t doesn’t begin
with a /. In these three examples, we used a rudimentary form of relative pathnames though
they are generally not labeled as such. Relative pathnames, in the sense they are known, are
discussed next.

4.10.1 Using . and .. in Relative Pathnames

In a preceding example (4.8}, you changed your directory from /home/kumar/pis/progs to its parent
directory (/home/kumar/pis) by using cd with an absolute pathname:

cd /home/kumar/pis

The File System 9 I

Navigation often becomes easier by using a common ancestor (here, /home) as reference. UNIX
offers a shortcut—the relative pathname—that uses either the current or parent directory as
reference, and specifies the path relative to it. A relative pathname uses one of these cryptic symbols:

« . (asingle dot}—This represents the current directory.

e .. (two dots)—This represents the parent directory.

We’ll now use the .. to frame relative pathnames. Assuming that you are placed in
/home/kumar/progs /data/text, you can use .. as an argument to ¢d to move to the parent directory,
/home /kumar /progs /data:

$ pwd

/home /kumar/progs/data/text

$cd .. Moves one level up

$ pwd
/home /kumar /progs /data

This method is compact and more useful when ascending the hierarchy-The command ed ..
translates to this: “Change your directory to the parent of the current directory.” You can combine
any number of such sets of .. separated by /s. However, when a / is used with .. it acquires a
different meaning; instead of moving down a level, it moves one level up. For instance, to move to
/home, you can always use c¢d /home. Alternatively, you can also use a relative pathname:

§ pwd

/home /kumar/pis

$cd../.. Moves two levels up

$ pwd

/home
Now let’s turn to the solitary dot that refers to the current directory. Any command which uses the
current directory as argument can also work with a single dot. This means that the ep command
(5.2) which also uses a directory as the last argument can be used with a dot:

cp ../sharma/.profile . A filename can begin with a dot

This copies the file .profile to the current directory (.). Note that you didn’t have to specify the
filename of the copy; it’s the same as the original one. This dot is also implicitly included whenever
we use a filename as argument, rather than a pathname. For instance, cd progs is the same as
cd ./progs.

Note: Absolute pathnames can get very long if you are located a number of “generations” away from
root. However, whether you should use one depends solely on the number of keystrokes required when
compared to a relative pathname. In every case here, the relative pathname required fewer key depressions.
Depending on where you are currently placed, an absolute pathname can be faster to type.

4.11 1s: LISTING DIRECTORY CONTENTS

You have already used the 1s command (1.4.9) to obtain a list of all filenames in the current directory.
Let’s execute it again:

I 78 UNIX: Concepts and Applications

$ 1s -x helpdir progs

helpdir:

forms .obd graphics.obd reports.obd

progs:

array.pl centZfah.pl n2words.pl name.pl

This time the contents of the directories are listed, consisting of the Oracle documentation in the
helpdir directory and a number of perl program files in progs. Note that 1s, when used with
directory names as arguments, doesn’t simply show their names as it does with ordinary files.

Recursive Listing (-R) The -R (recursive) option lists all files and subdirectories in a directory
tree. Similar to the DIR /S command of DOS, this traversal of the directory tree 1s. done recursively
until there are no subdirectories left:

$ 1s -xR

08_packets.html TOC.sh calendar cptodos.sh
dept.list emp.lst helpdir progs
usdsk06x usdsk07x usdsk08x ux2nd06
./helpdir:

forms.hlp graphics.hlp reports.hlp

./progs:

array.pl cent2fah.pl nZwords.pl name.pl

The list shows the filenames in three sections—the ones under the home directory and those
under the subdirectories helpdir and progs. Note the subdirectory naming conventions followed;
./helpdir indicates that helpdir is a subdirectory under . (the current directory). Since
/home/kumar happens to be the current directory, the absolute pathname of this file expands to
/home /kumar/helpdir.

Table 4.1 Optionsto 1s

Option Description

-X Multcolumnar output

-F Marks executables with *, directories with / and symbolic links with @

-a Shows all filenames beginning with a dot including . and ..

-R Recursive list

-r Sorts filenames in reverse order (ASCII collating sequence by default)

-1 Long listing in ASCII collating sequence showing seven attributes of a file (6.1)
-d dirname Lists only dirname if dirname is a directory {6.2)

-t Sorts filenames by last modification tume (11.6)

-1t Sorts listing by last modification time (11.6)

-u Sorts filenames by last access time (11.6)

-Tu Sorts by ASCII collating sequence but listing shows last access ume (11.6)
-lut As above but sorted by last access time (11.6)

-i Displays inode number (11.1)

The File System ﬂ

4.12 THE UNIX FILE SYSTEM

We have learned to use the basic command set for handling files and directories. Let’s conclude
this chapter by taking a cursory look at the structure of the UNIX file system. This structure
has been changing constantly over the years until AT&T proposed one in its SVR4 release.
Though vendor implementations vary in detail, broadly the SVR4 structure has been adopted
by most vendors.

Refer to Fig. 4.1 which shows a heavily trimmed structure of a standard UNIX file system. In real
life, the root directory has many more subdirectories under it than shown, but for our initial
comprehension, we'll stick to the ones presented below. It helps, from the administrative point of
view at least, to view the entire file system as comprising two groups of files. The first group contains
the files that are made available during system installation:

« /binand /usr/bin—These are the directories where all the commonly used UNIX commands
(binaries, hence the name bin) are found. Note that the PATH variable always shows these
directories in its list.

« /sbinand fusr/sbin—Ifthere’s a command that you can’t execute but the system administrator
can, then it would probably be in one of these directories. You won’t be able to execute most
(some, you can) commands in these directories. Only the system administrator’s PATH shows
these directories.

o /etc—This directory contains the configuration files of the system. You can change a very
important aspect of system functioning by editing a text file in this directory. Your login name
and password are stored 1n files /etc/passwd and /etc/shadow.

» /dev—This directory contains all device files. These files don’t occupy space on disk. There
could be more subdirectories like pts, dsk and rdsk in this directory.

e /liband /usr/1ib—Contain all library files in binary form. You'll need to link your C programs
with files in these directories.

e /usr/include—Contains the standard header files used by C programs. The statement
#include <stdio.h> used in most C programs refers to the file stdio.h in this directory.

 Jusr/share/man—This is where the man pages are stored. There are separate subdirectories
here (like man1, man2, etc.) that contain the pages for each section. For instance, the man page
of 1s can be found in fusr/share/man/manl, where the 1 in manl represents Section | of the
UNIX manual. These subdirectories may have different names on your system (like smanl,
sman2, etc. in Solaris).

Over time, the contents of these directories would change as more software and utilities are added
to the system. Users also work with their own files; they write programs, send and receive mail and
also create temporary files. These files are available in the second group shown below:

o /tmp—The directories where users are allowed to create temporary files. These files are wiped
away regularly by the system.

o /var—The variable part of the file system. Contains all your print jobs and your outgoing and
incoming mail.

E UNIX: Concepts and Applications

o /home—On many systems users are housed here. kumar would have his home directory in
/home/kumar. However, your system may use a different location for home directories.

On a busy system, it’s in directories belonging to the second group that you could experience rapid
depletion of available disk space. You'll learn later to house some of these directory structures on
separate file systems so that depletion of space in one file system doesn’t affect other file systems.
File system internals and administration are taken up toward the end of this text.

4.13 CONCLUSION

'1_‘.ough UNIX is known to make little distinction between the various types of files, that wasn’t
really established in this chapter. You used exclusive commands to handle directories (like pwd, cd,
mkdir and rmdir). These commands have no relevance when applied to ordinary or device files. It
appears that UNIX does care to some extent about the type of file it handles. In the next chapter,
we look at ordinary files using yet another set of commands meant for them.

WrAP UP

4.1 How long can a UNIX filename be2 Which characters can't be used in a filename?

Copyrighted material

4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9
4.10
411

4.12

The File System 81 I

State two reasons for not having a filename beginning with a hyphen.

Can the files note and Note coexist in the same directory?

In how many ways can you find out what your home directory is?

Switch to the root directory with ¢d and then run cd .. followed by pwd. What do you notice?
What is the easiest way of changing from /var/spool/1p/admins to /var/spool /mail?
Explain the significance of these two commands: 1s .. ; 1s -d ..

Look up the man page of mkdir to find out the easiest way of creating this directory structure:
share/man/catl

If rmdir c_progs fails, what could be the possible reasons?
If the file /bin/echo exists on your system, are the commands echo and /bin/echo equivalent?

How do you run 1s to (i) mark direciories and executables separately, (i) display also hidden
files?

How will you obtain a complete listing of all files and directories in the whole system?

Flex Your Brain

4.1

4.2
4.3

4.4
4.5
4.6

4.7

4.8

4.9
4.10
4.11

Name the two types of ordinary files and explain the difference between them. Provide three
examples of each type of file.

How does the device file help in accessing the device?

Which of these commands will work? Explain with reasons: (i) mkdir a/b/c (ii) mkdir a a/b
(iii) rmdir a/b/c (iv) rmdir a a/b (v) mkdir /bin/foo

If mkdir test fails, what could be the possible reasons?
Which of these files or directories can you create? Explain with reasons: ., .., ... and

The command rmdir bar fails with the message that the directory is not empty. On running
1s bar, no files are displayed. Why did the rmdir command fail2

Suppose you have to develop a script that refers to a file in charlie’s home directory. How will
you specify the location of this file in your script fo make sure that it works even when charlie’s
home directory changes?

Explain the difference between the commands c¢d ~charlie and ¢d ~/charlie. Is it possible
for both commands to work?

Why do we sometimes run a command like this — . /update. sh instead of update.sh?
What is the sort order prescribed by the ASCII collating sequence?

Assuming that you are positioned in the directory /home/kumar, what are these commands

presumed to do and explain whether they will work at all: (i) cd ../.. (ii) mkdir ../bin
(iii) rmdir .. (iv) 1s ..

Handling Ordinary Files 89 I

The AT&T and BSD versions of more differ widely in their capabilities and command usage. The
POSIX specification on more is based on the BSD version. You have to try out the commands

shown in Table 5.1, as well as look up the man pages, to know whether they apply to your system.
more has a fairly useful help screen too; hitting an h invokes this screen.

5.5.1 Navigation
Irrespective of version, more uses the spacebar to scroll forward a page at a time. You can also scroll
by small and large increments of lines or screens. To move forward one page, use

f or the spacebar

and to move back one page, use

b

5.5.2 The Repeat Features

The Repeat Factor Many navigation commands in more, including f and b, use a repeat factor.
This is the term used in vi (7.1.1) to prefix a number to a vi internal command. Use of the repeat
factor as a command prefix simply repeats the command that many times. This means you can use
10f for scrolling forward by 10 pages and 30b for scrolling back 30 pages. Just remember that the
commands themselves are not displayed on the screen—even for a moment.

Repeating The Last Command (.) more has a repeat command, the dot (same command used by
vi), that repeats the last command you used. If you scroll forward with 10f, you can scroll another
10 pages by simply pressing a dot. This is a great convenience available in more!

5.5.3 Searching for a Pattern

You can perform a search for a pattern with the / command followed by the string. For instance, to
look for the first while loop in your program, you'll have to enter this:

/while Press [Enter| also

You can repeat this search for viewing the next while loop section by pressing n, and you can do that
repeatedly until you have scanned the entire file. Move back with b (using a repeat factor, if necessary)
to arrive at the first page.

Mote: The search capability in more is not restricted to simple strings. Like many UNIX commands
(grep, sed and vi), more lets you use a regular expression to match multiple similar strings. Regular
expressions are discussed in several chapters of this text beginning with Chapter 13.

5.5.4 Using more in a Pipeline

The man syntax doesn’t indicate this (except mention that more is a filter), but we often use more to
page the output of another command. The 1s output won’t fit on the screen if there are too many
files, so the command has to be used like this:

Handling Ordinary Files E_S-I

e The tab character, [Ctri-i], 1s shown as \t and the octal value 011.
o The bell character, [Ctri-g], is shown as 007. Some systems show it as \a.
The formfeed character, [Ctrl-1], is shown as \f and 014.

The LF (linefeed or newline) character, [Ctrl-j], is shown as \n and 012. Note that od makes
the newline character visible too.

Like we, od also takes a command’s output as its own input, and in Section 5.13, we'll use it to
display nonprintable characters in filenames.

5.10 cmp: COMPARING TWO FILES

You may often need to know whether two files are identical so one of them can be deleted. There are
three commands in the UNIX system that can tell you that. In this section, we’ll have a look at the
cmp (compare) command. Obviously, it needs two filenames as arguments:

$ cmp chap0l1 chap02
chap01 chap02 differ: char 9, line 1

The two files are compared byte by byte, and the location of the first mismatch (in the ninth character
of the first line) is echoed to the screen. By default, emp doesn’t bother about possible subsequent
mismatches but displays a detailed list when used with the -1 (list) option.

If two files are identical, cmp displays no message, but simply returns the prompt. You can try it out
with two copies of the same file:

$ cmp chap0l chap0l
$

This follows the UNIX tradition of quiet behavior. This behavior is also very important because the
comparison has returned a true value, which can be subsequently used in a shell script to control the
flow of a program.

5.11 comm: WHAT IS COMMON?

Suppose you have two lists of people and you are asked to find out the names available in one and

not in the other, or even those common to both. comm is the command you need for this work. It

requires two sorted files, and lists the differing entries in different columns. Let’s try it on these two
files:

$ cat filel $ cat file2
c.k. shukla anil aggarwal
chanchal singhvi barun sengupta
s.n. dasgupta c.k. shukla
sumit chakrobarty lalit chowdury

s.n. dasgupta

Both files are sorted and have some differences. When you run comm, it displays a three-columnar
output:

'96 UNIX: Concepts and Applications

$ comm file[12] Comparing filel and file2
anil aggarwal
barun sengupta
c.k. shukla
chanchal singhvi
lalit chowdury
s.n. dasgupta
sumit chakrobarty

The first column contains two lines unique to the first file, and the second column shows three lines
unique to the second file. The third column displays two lines common (hence its name) to both

files.

This output provides a good summary to look at, but is not of much use to other commands that
take comm’s output as their input. These commands require single-column output from comn, and
comm can produce it using the options -1, -2 or -3. To drop a particular column, simply use its
column number as an option prefix. You can also combine options and display only those lines that
are common:

comm -3 fool foo2 Selects lines not common to both files
comm -13 fool foo2 Selects lines present only in second file

The last example and one more with the other matching option (-23) has more practical value than
you may think, but we’ll not discuss their application in this text,

5.12 diff: CONVERTING ONE FILE TO OTHER

diff is the third command that can be used to display file differences. Unlike its fellow members,
cmp and comm, it also tells you which lines in one file have to be changed to make the two files
identical. When used with the same files, it produces a detailed output:

§ diff filel file2 Ordiff file[l12]

0al,?2 Append after line 0 of first file
> anil aggarwal this line

> barun sengupta and this line

2c4 Change line 2 :}f first file

< chanchal singhvi Replacing this line

- with

> lalit chowdury this line

4d5 Delete line 4 of first file

< sumit chakrobarty containing this line

diff uses certain special symbols and instructions to indicate the changes that are required to
make two files identical. You should understand these instructions as they are used by the sed
command, one of the most powerful commands on the system.

Each instruction uses an address combined with an action that is applied to the first file. The
instruction 0al,2 means appending two lines after line 0, which become lines | and 2 in the second
file. 2c4 changes line 2 which is line 4 in the second file. 4d5 deletes line 4.

Handling Ordinary Files 37 I

Tip: If you are simply interested in knowing whether two files are identical or not, use cmp without any
options.

Maintaining Several Versions of a File (-¢) diff -e produces a set of instructions only (similar
to the above), but these instructions can be used with the ed editor (not discussed in this text) to
convert one file to the other. This facility saves disk space by letting us store the oldest file 1n its
entirety, and only the changes between consecutive versions. We have a better option of doing that
in the Source Code Control System (SCCS), but diff remains quite useful if the differences are few.
SCCS is discussed in Chapter 22.

5.13 dos2unix AND unix2dos: CONVERTING BETWEEN DOS AND UNIX

Life being the way it is, you'll encounter DOS/Windows files in the course of your work. Sometimes,
you’ll need to move files between Windows and UNIX systems. Windows files use the same format
as DOS, where the end of line is signified by two characters—CR (\r) and LF (\n). UNIX files, on
the other hand, use only LE. Here are two lines from a DOS file, foo, viewed on a UNIX system
with the vi editor:

Line 1™M The [Ctrl-m] character at end
Line 2°M

There’s a“M ([Ctrl-m]) representing the CR sequence at the end of each line. An octal dump confirms
this:

$ od -be foo
0000000 114 151 156 145 040 061 015 012 114 151 156 145 Q40 062 015 012
L i n e 1 v \m L i n e 2 \r \n

The CR-LF combination is represented By the octal values 015-012 and the escape sequence \r\n.
Conversion of this file to UNIX is just a simple matter of removing the \r. This is often done
automatically when downloading a UNIX file from a Windows machine using ftp, but sometimes
you have to do that job yourself

For this purpose, some UNIX systems feature two utilities—dos2unix and unix2dos—for converting
files between DOS and UNIX. Bometimes, systems differ in their implementation. This is how we
use dos2unix to convert this fil¢ foo to UNIX format on a Solaris system:

dos2unix foo foo.dos

The output is written to foo.dos. When you use od again, you'll find that the CR character is gone:

$ od -bc foo.dos
0000000 114 151 156 145 040 061 012 114 151 156 145 040 062 012
L i n e 1 \n» L i n e 2 \n

One some systems (like Solaris), the first and second filenames could be the same. Others (like
Linux) require only one filename, in which case the command rewrites the input file. Some may even
require redirection. Browse through the man page to identify the form that works on your machine:

ﬁ UNIX: Concepts and Applications

This option can be used for decompression also. To decompress all files in this directory you need to use
gunzip -r progs or gzip -dr progs.

Tip: To view compressed text files, you really don't need to “gunzip” (decompress) them. Use the gzcat
and gzmore (or zcat and zmore) commands if they are available on your systern. In most cases, the
commands run gunzip -c.

Note: For some years, gzip reigned as the most favored compression agent. Today, we have a better
agent in bzip2 (and bunzip2). bzip2 is slower than gzip and creates .bz?2 files. We are beginning to
see . bz2 files on the Internet. bzip2 options are modeled on gzip, so if you know gzip you also know
bzip2.

5.16 tar: THE ARCHIVAL PROGRAM

For creating a disk archive that contains a group of files or an entire directory structure, we need to
use tar. The command is taken up in some detail in Chapter 15 to back up files to tape (or floppy),
but in this section we need to know how the command is used to create a disk archive. For this
minimal use of tar we need to know these ey options:

-C Create an archive
-X Extract files from archive
-t Display files in archive

~-farch Specify the archive arch

Only one these key options can be used at a time. We'll also learn to use gzip and gunzip to compress
and decompress the archive created with tar.

5.16.1 Creating an Archive (-c)

To create an archive, we need to specify the name of the archive (with -f), the copy or write operation
(-c) and the filenames as arguments. Additionally, we’ll use the -v (verbose) option to display the
progress while tar works. This is how we create a file archive, archive.tar, from the two
uncompressed files used previously:

$ tar -cvf archive.tar libc.html User Guide.ps
a libc.html 3785K -v (verbose) displays list
a User_Guide.ps 364K a indicates append

By convention, we use the .tar extension, so you’ll remember to use the same tar command for
extraction. We created an archive containing two ordinary files, but tar also behaves recursively to
back up one or more directories. In the following example, tar fills the archive progs.tar with
three directory structures:

tar -cvf progs.tar c_progs java_progs shell_scripts

We'll soon use the same tar command to extract files from this archive. But before we do that, let’s
see how we can compress this archive.

- UNIX: Concepts and Applications

5.1 What will cat foo foo foo display?
5.2 How will you copy a directory structure barl to bar22 Does it make any difference if bar2 exists?

5.3 Run the command tty and note the device name of your terminal. Now use this device name
(say, /dev/pts/6) in the command, cp /etc/passwd /dev/pts/6. What do you observe?

5.4 How will you remove a directory tree even when it's not empty and without using rmdir?

5.5 How does the command mv barl bar2 behave, where both barl and bar2 are directories,
when (i) bar2 exists, (ii) bar2 doesn't exist?

5.6 Use the file command on all files in the /dev directory. Can you group these files into two
categories?

5.7 How do you print three copies of /etc/passwd on the printer named arjun?

5.8 Run the script command and then issue a few commands before you run exit. What do you
see when you run cat -v typescript?

5.9 How will you find out the ASCII octal values of the numerals and alphabets?
5.10 How will you display only the lines common to two files?
5.11 The command cmp fool foo2 displays nothing. What does it indicate?

5.1 Describe the contents of a directory, explaining the mechanism by which its entries are updated.
Why is the size of a directory usually small?

Copyrighted material

Im UNIX: Concepts and Applications

File Size The fifth column shows the size of the file in bytes, i.e., the amount of data it contains,
The important thing to remember is that it is only a character count of the file and not a measure
of disk space that it occupies. The space occupied by a file on disk is usually larger than this figure
since files are written to disk in blocks of 1024 bytes or more. In other words, even though the file
dept.1st contains 84 bytes, it would occupy 1024 bytes on disk on systems that use a block size of
1024 bytes. We'll discuss the significance of block size much later in the text.

The two directories show smaller file sizes (512 bytes each). This is to be expected as a directory
maintains a list of filenames along with an identification number (the inode number) for each file.
The size of the directory file depends on the size of this list—whatever be the size of the files
themselves.

Last Modification Time The sixth, seventh and eighth columns indicate the last modification
time of the file, which is stored to the nearest second. A file is said to be modified only if its
contents have changed in any way. If you change only the permissions or ownership of the
file, the modification time remains unchanged. If the file is less than a year old since its last
modification date, the year won’t be displayed. Note that the file genie. sh has been modified more
than a year ago.

You'll often need to run automated tools that make decisions based on a file’s modification time.
This column shows two other time stamps when 1s 1s used with other options. The time stamps
are discussed in Chapter 11.

Filename The last column displays the filenames arranged in ASCII collating sequence,
You already know (4.2) that UNIX filenames can be very long (up to 255 characters). If you
would like to see an important file at the top of the listing, then choose its name in uppercase—
at least, its first letter.

The order of the list can be changed by combining the -1 option with other options. In the rest of
the chapter, we'll discuss permissions and ownership, and also learn how to change them.

6.2 THE -d OPTION: LISTING DIRECTORY ATTRIBUTES

You'll recall (4.11.1) that 1s, when used with directory names, lists files in the directory rather than
the directory itself. To force 1s to list the attributes of a directory, rather than its contents, you need
to use the -d (directory) option:

$ 1s -1d helpdir progs

drwxr-xr-x 2 kumar metal 512 May 9 10:31 helpdir

drwxr-xr-x 2 kumar metal 512 May 9 09:57 progs

Directories are easily identified in the listing by the first character of the first column, which here
shows a d. For ordinary files, this slot always shows a - (hyphen), and for device files, either a b or
c. The significance of the attributes of a directory differ a good deal from an ordinary file. Directories
will be considered in some detail in Chapter 11.

Basic File Attributes 111 I

$ cat /usr/bin/startx > xstart Actually copies the file startx
$ 1s -1 xstart
-rw-r--r-- 1 kumar metal 1906 Sep 5 23:38 xstart

It seems that, by default, a file doesn’t also have execute permission. So how does one execute such
a file? To do that, the permissions of the file need to be changed. This is done with chmod.

The chmod (change mode) command is used to set the permissions of one or more files tor all three
categories of users (user, group and others). It can be run only by the user (the owner) and the
superuser. The command can be used in two ways:

« Ina relative manner by specitying the changes to the current permissions.

o In an absolute manner by specifying the final permissions.
We'll consider both ways of using chmod in the following sections.

6.5.1 Relative Permissions

When changing permissions in a relative manner, chmod only changes the permissions specified in
the command line and leaves the other permissions unchanged. In this mode it uses the following
syntax:

chmod category operation permission filename(s)

chmod takes as its argument an expression comprising some letters and symbols that completely
describe the user category and the type of permission being assigned or removed. The expression
contains three components:

o User category (user, group, others)
o The operation to be performed (assign or remove a permission)

o The type of permission (read, write, execute)

By using suitable abbreviations for each of these components, you can frame a compact expression
and then use it as an argument to chmod. The abbreviations used for these three components are
shown in Table 6.1.

Now let’s consider an example. To assign execute permission to the user (We won’t remind again
that user here is the owner.) of the file xstart, we need to frame a suitable expression by using
appropriate characters from each of the three columns of Table 6.1. Since the file needs to be
executable only by the user, the expression required is u+x:

% chmod u+x xstart
$ 1s -1 xstart
-rwxr--r-- 1 kumar metal 1906 May 10 20:30 xstart

The command assigns (+) execute (x) permission to the user (u), but other permissions remain
unchanged. You can now execute the file if you are the owner of the file but the other categories
(i.e., group and others) still can’t. To enable all of them to execute this file, you have to use multiple
characters to represent the user category (ugo):

112 UNIX: Concepts and Applications

$ chmod ugo+x xstart ; 1s -1 xstart
-rwxr-xr-x 1 kumar metal 1906 May 10 20:30 xstart

The string uge combines all the three categories—user, group and others. UNIX also offers a
shorthand symbol a (all) to act as a synonym for the string. And, as if that wasn’t enough, there's an
even shorter form that combines these three categories. When it is not specified, the permission
applies to all categories. So the previous sequence can be replaced by either of the following:

chmod a+x xstart a implies ugo
chmod +x xstart By default, a is implied

chmod accepts multiple filenames in the command line. When you need to assign the same set of
permissions to a group of files, this is what you should do:

chmod u+x note notel note3

Permissions are removed with the - operator. To remove the read permission from both group and
others, use the expression go-r:

$ 1s -1 xstart

-rwxr-xr-x 1 kumar metal 1906 May 10 20:30 xstart
$ chmod go-r xstart ; 1s -1 xstart
~rWX=-=x=--x 1 kumar metal 1906 May 10 20:30 xstart

chmed also accepts multiple expressions delimited by commas. For instance, to restore the original
permissions to the file xstart, you have to remove the execute permission from all (a-x) and assign
read permission to group and others (go+r):

$ chmod a-x,go+r xstart ; 1s -1 xstart
-rW=r==r-- 1 kumar metal 1906 May 10 20:30 xstart

More than one permission can also be set; u+rwx is a valid chmod expression. So setting write and
execute permissions for others is no problem:

% chmod o+wx xstart ; 1s -1 xstart
=PH=T==TWX 1 kumar metal 1906 May 10 20:30 xstart

We described relative permissions here, but chmod also uses an absolute assignment system, which
is taken up in the next topic.

Table 6.1 Abbreviations Used by chmod

Category Operation Permission

u—User +—Assigns permission r—Read permission
g—Group -—Removes permission w—Write permission
o0—Others =—~Assigns absolute permission x—Execute permission

a—All (ugo)

';ﬂ UNIX: Concepts and Applications

To assign all permissions to the owner, read and write permissions to the group, and only execute
permission to the others, use this:

chmod 761 xstart

Now it should be quite easy for you to understand that the expression 777 signifies all permissions
for all categories, while 000 indicates absence of all permissions for all categories. But can we delete
a file with permissions 0007 Yes, we can. Can we prevent a file with permissions 777 from being
deleted? We can do that too. We'll soon learn that it’s the directory that determines whether a file
can be deleted, not the file itself.

Note: Remember that a file's permissions can only be changed by the owner (understood by chmod as
user) of the file. One user can't change the protection modes of files belonging to another user. However,
the system administrator can tamper with all file attributes including permissions, irrespective of their
ownership.

6.5.3 The Security Implications

To understand the security implications behind these permissions and the role played by chmod,
consider the default permissions of the file xstart that was shown at the beginning of Section 6.5:

-rw-r--r-- 1 kumar metal 1906 May 10 20:30 xstart

These permissions are fairly safe; only the user can edit the file. What are the implications if we
remove all permissions in either of these ways?

chmod u-rw,go-r xstart
chmod 000 xstart

The listing in either case will look like this:
---------- 1 kumar metal 1906 May 10 20:30 xstart

This setting renders the file virtually useless; you simply can’t do anything useful with it. But the
user can still delete this file! To understand why that can happen, you need to understand directory
permissions and how they are related to file permissions.

On the other hand, you must not be too generous (and careless, too) to have all permissions enabled
for all categories of users, using either of these commands:

chmod a+rwx xstart
chmod 777 xstart

The resulting permissions setting is simply dangerous:

~FWXTWXrwX 1 kumar metal 1906 May 10 20:30 xstart

It's the universal write permission here that concerns us most. This file can be written by all. You
shouldn’t be able to read, write or execute every file. If that were possible, you can never have a

Basic File Attributes 1 15.. I

secure system. The UNIX system, by default, never allows that, and no sensible user will compromise
security so easily.

Note: We ignored the directory permissions in our discussions, but they also have a major role to play in
setting a file's access rights. No matter how careful you are with your file permissions, a faulty directory
permission will affect the security of all files housed in that directory. It doesn't matter who owns the file
or whether the file itself has write permission for that user. Directory permissions are taken up later.

6.5.4 Using chmod Recursively (-R)

It's possible to make chmod descend a directory hierarchy and apply the expression to every file and
subdirectory it finds. This is done with the -R (recursive) option:

chmod -R a+x shell_scripts

This makes all files and subdirectories found in the tree-walk (that commences from the
shell_scripts directory) executable by all users. You can provide multiple directory and
filenames, and if you want to use chmod on your home directory tree, then “cd” to it and use it
in one of these ways:

chmod -R 755 . Works on hidden files also
chmod -R a+x * Leaves out hidden files

When you know the shell metacharacters well, you’ll appreciate that the * doesn’t match filenames
beginning with a dot. The dot is generally a safer bet but note that both commands change the
permissions of directories also. What do permissions mean when they are applied to a directory?
The directory is taken up first in Section 6.6 and then again in Chapter 11.

6.6 DIRECTORY PERMISSIONS

Directories also have their own permissions and the significance of these permissions differ a great
deal from those of ordinary files. You may not have expected this, but be aware that read and write
access to an ordinary file are also influenced by the permissions of the directory housing them. It’s
possible that a file can’t be accessed even though it has read permission, and can be removed even
when it's write-protected. In fact, it’s very easy to make it behave that way.

If the default directory permissions are not altered, the chmod theory still applies. However, if they
are changed, unusual things can happen. Though directory permissions are taken up later (11.4),
it’s worthwhile to know what the default permissions are on your system:

$ mkdir c_progs; 1s -1d c_progs
drwxr-xr-x 2 kumar metal 512 May 9 09:57 c_progs

The default permissions of a directory on this system are rwxr-xr-x (or 755); that's what it should
be. A directory must never be writable by group and others. If you find that your files are being

tampered with even though they appear to be protected, check up the directory permissions. If the
permissions differ from what you see here, look up Chapter 11 for remedial action.

Iﬂ's UNIX: Concepts and Applications

Caution: If a directory has write permission for group and others also, be assured that every user can
remove every file in the directory! As a rule, you must not make directories universally writable unless you
have definite reasons to do so.

Mote: The default file and directory permissions on your machine could be different from what has been
assumed here. The defaults are determined by the umask setting of your shell. This topic is discussed in
Section 11.5.

6.7 CHANGING FILE OWNERSHIP

File ownership is a feature often ignored by many users. By now you know well enough that when
a user kumar of the metal group creates a file foo, he becomes the owner of foo, and metal becomes
the group owner. It's only kumar who can change the major file attributes like its permissions and
group ownership. No member of the metal group (except kumar) can change these attributes.
However, when sharma copies foo, the ownership of the copy is transferred to sharma, and he can
then manipulate the attributes of the copy at will.

There are two commands meant to change the ownership of a file or directory—chown and chgrp.
UNIX systems differ in the way they restrict the usage of these two commands. On BSD-based
systems, only the system administrator can change a file’s owner with chown. On the same systems,
the restrictions are less severe when it comes to changing groups with chgrp. On other systems,
only the owner can change both.

6.7.1 chown: Changing File Owner

We'll first consider the behavior of BSD-based chown (change owner) that has been adopted by
many systems including Solaris and Linux. The command is used in this way:

chown options owner [:group] file(s)

chown transfers ownership of a file to a user, and it seems that it can optionally change the group as
well. The command requires the user-id (UID) of the recipient, followed by one or more filenames.
Changing ownership requires superuser permission, so let’s first change our status to that of
superuser with the su command:

$ su
Password: *xhxkwik This 15 the root password!
This is another shell

After the password is successfully entered, su returns a # prompt, the same prompt used by root. su
lets us acquire superuser status if we know the root password. To now renounce the ownership of
the file note to sharma, use chown in the following way:

1s -1 note

-rwxr----x 1 kumar metal 347 May 10 20:30 note
chown sharma note ; 1s -1 note

-rwxr----x 1 sharma metal 347 May 10 20:30 note

Basic File Attributes 119 I

- Flex Your Brain .

6.1

6.2

6.3
6.4

6.5
6.6

6.7

6.8

6.9

6.10

6.11

6.12

How will you obtain a complete listing of all files and directories in the whole system and save
the output in a file?

Explain briefly the significance of the first four fields of the 1s -1 output. Who can change these
attributes? Is there any attribute that can be changed only by the superuser?

Explain the significance of the following commands: (i) 1s -1d . (i) 1s -1 ..

The commands 1s bar and 1s -d bar display the same output—ithe string bar. This can happen
in two ways. Explain.

Does the owner always belong to the same group as the group owner of a file?

Create a file foo. How do you assign all permissions to the owner and remove all permissions
from others using (i} relative assignment, (ii) absolute assignment? Do you need to make any
assumptions about foo's default permissions?

You tried to copy a file foo from another user’s directory, but you got the error message
cannot create file foo. You have write permission in your own directory. What could be the
reason and how do you copy the file?

Explain the consequences, from the security viewpoint, of a file having the permissions (i) 000
(i) 777. Assume that the directory has write permission.

Examine the output of the two commands on a BSD-based system. Explain whether kumar can
(i) edit, (ii) delete, (iii) change permissions, (iv) change ownership of foo:

$ who am i ; 1s -1 foo

kumar

-r==rW--=-- 1 sumit kumar 78 Jan 27 16:57 foo
Assuming that a file’s current permissions are rw-r-xr--, specify the chmod expression required
to change them to (i) rwxrwxrwx (ii) re-r----- (iii) ==r==re-= (iv) ===cea-- , using both relative

and absolute methods of assigning permissions.

Use chmod -w . and then try to create and remove a file in the current directory. Can you do
that? |s the command the same as chmod a-w foo?

How will you determine whether your system uses the BSD or AT&T version of chown and chgrp?

The vi Editor ’ﬂ

=1

h [Enter]
E_I}-a‘.ﬂ,u,ﬂ‘
[ﬂrT 'c*npera[t_rr

Xy 20

Fig. 7.2 The Three Modes
7.1.3 A Few Tips First

We are about to take off, but before we do that, a few tips at this stage will stand you in good stead.
You must keep them in mind at all times when you are doing work with vi:

o Undo whenever you make a mistake. If you have made a mistake in editing, either by wrongly
deleting text or inserting it at a wrong location, then as a first measure, just press [Esc/ and
then u to undo the last action. If that makes matters worse, use u again. Linux users should
instead use [Ceri-r].

¢ Clearing the screen Ifthe screen gets garbled for some reason, use [Crri-{] (el) in the Command
Mode to redraw the screen. If you hit [Cirl-I] in the Input Mode, you'll see the symbol ~L on
the screen. Use the backspace key to wipe it out, press [Ese/ and then hit [Cerl-{].

e Don't use [CapsLock] vi commands are case-sensitive; a and A are different commands.
Even if you activate this key to enter a large block of text in uppercase, make sure you deactivate
it after text entry is complete.

¢ Avoid using the PC navigation keys As far as possible, avoid using all the standard navigation
keys like Up, Down, Left and Right, [PageUp/ and [PageDown|. Many of them could fail
when you use vi over a network connection. vi provides an elaborate set of keys for
navigation purposes.

The vi Editor H.'_?I

vi is @l link of ex vi is one of the Winks of the ex program

¢ sone/Esc] ¢ Rmodes/Fsc/

vi is one of the modell of the ex program

vi is on@ 1ink of ex

Fig. 7.8 Replacing Text with s Fig. 7.9 Replacing Text with R

followed by the character that replaces the one under the cursor (Fig. 7.7). You can replace a single
character only in this way. vi momentarily switches from Command Mode to Input Mode when r
is pressed. It returns to Command Mode as soon as the new character is entered. There’s no need
to press [Esc/ when using r and the replacement character, since vi expects a single character
anyway.

When you want to replace the letter d with 10f in a printf statement in C, you need to replace one
character with three. In that case, press

s Replaces one character with many

vi deletes the character under the cursor and switches to Input Mode. It may also show a § at that
location to indicate that replacement will not aftect text on its right. Now enter 10f and press [Esc/.
To replace multiple characters, use a repeat factor. 3s replaces three characters with new text. Use
of s 1s shown 1n Fig. 7.8.

R and S act in a similar manner compared to their lowercase ones except that they act on a larger
group of characters:

R Replaces all text on the nght of the cursor position.

S Replaces the entire line irrespective of cursor position. (Existing line disappears)

Try using the repeat factor with Rand § and see whether you can take advantage of this feature. Use
of R 1s shown in Fig. 7.9.

You have now been able to enter the Input Mode in ten ways. The functions of these ten keys are
summarized in Table 7.1.

Caution: You must press [Esc] to switch to Command Mode after you have keyed in text. Repeated
pressing of [Esc/ won't make any difference to vi except that it has a built-in capability to indicate with
a beep if a key has been pressed unnecessarily. Try this by pressing [Esc] several times. You are now in
the Command Mode.

LINUX: A superb text completion feature is available in vim. If the string printf is available in the file,
you don't need to enter the entire string eve. Just key in as much as is necessary to make the string
unique (say, up to pr), and then press

[Ctrl-p] vim attempts to complete string

E UNIX: Concepts and Applications

vim expands pr to printf if this is the only word beginning with pr. In case there are other words,
repeated pressing of the key shows all matching words in turn. in case you have to view the list backwards,
use [Cirl-njf.

Table 7.1 Input Mode Commands

Command Function

Inserts text to left of cursor (Existing text shifted right)

Appends text to right of cursor (Existing text shifted right)

Inserts text at beginning of line (Existing text shifted right)

Appends text at end of line

Opens line below

Opens line above

reh Replaces single character under cursor with ¢4 (No [Esc/ required)
Replaces text from cursor to right (Existing text overwritten)
Replaces single character under cursor with any number of characters
Replaces entire line

D0 I o -

wr v

7.3 SAVING TEXT AND QUITTING—THE ex MODE

When you edit a file using vi—or for that matter, any editor—the original file isn’t disturbed as
such, but only a copy of it that is placed in a buffer (a temporary form of storage). From time to
time, you should save your work by writing the buffer contents to disk to keep the disk file current
(or, as we say, in sync). When we talk of saving a file, we actually mean saving this buffer. You may
also need to quit vi after or without saving the buffer. These features are adequately handled by
the ex Mode. The basic file handling features are shown in Table 7.2.

7.3.1 Saving Your Work (:w)

We have already used the ex Mode command, :x, to save the buffer and exit the editor (7.1). For
extended sessions with vi, you must able to save the buffer and remain in the editor. From time to
time, you must use the :wcommand to write the buffer to disk. Enter a :, which appears on the last
line of the screen, then w and finally [Enter/:

:w/Enter|

"sometext™, 8 lines, 275 characters

You can now continue your editing work normally, but make sure that you execute this command
regularly. With the :w command you can optionally specify a filename as well. In that case, the
contents are separately written to another file.

Tip: It's common practice to ignore the readonly label on opening a file that doesn’t have the write
permission bit set. When you attempt to save the file with :w, vi retorts with the message
File is read only. You should have been careful in the first place, but there's hope: Just save the file
with a different name (say, :w foo) after making sure that foo doesn't exist. Look up Table 7.2 for the
command to use when foo exists.

The vi Editor .

The previous command returns you to the Command Mode so you can continue editing. However,
to save and quit the editor (i.e., return to the shell), use the :x (exit) command instead:

:x[Enter]

"sometext", 8 lines, 303 characters

$

7.3.2 Saving and Quitting (:x and :wq)

You can also use :wq to save and quit the editor. But that requires an additional keystroke and is not
recommended for use.

Tip: The best way to save and quit the editor is to use ZZ, a Command Mode command, instead of
1X OF :Wq.

7.3.3 Aborting Editing (:q)

It’s also possible to abort the editing process and quit the editing mode without saving the buffer.
The :q (quit) command does that job:

;q[E#Icr} Won't work if buffer is unsaved

vi also has a safety mechanism that prevents you from aborting accidentally if you have modified
the file (buffer) in any way. The following message is typical when you try to do so:

No write since last change (:quit! overrides)
If the buffer has been changed and you still want to abandon the changes, then use
:q! Ignores all changes made and quits

to return you to the prompt irrespective of the status of the buffer—no questions asked. vi suggests
appending a ! to an ex Mode command every time it feels that you could be doing something that
is potentially unsafe.

Note: In general, any ex Mode command used with a ! signifies an abort of some type. It can be used
to switch to another file without saving the current one, or reload the last saved version of a file. You can
even use it to overwrite a separate file.

7.3.4 Writing Selected Lines

The :w command is an abbreviated way of executing the ex Mode instruction :1,$w. w can be
prefixed by one or two addresses separated by a comma. The command

:10,50w n2words.pl Writes 41 lines to another file
saves lines 10 through 50 to the file n2words.p1. You can save a single line as well:

:5w n2words.pl Wrates 5th line to another file

The vi Editor 131 I

Note: You can't be assured of complete recovery every time. Sometimes, vi may show you absolute
junk when using the -r option (or : recover). In that case, don't save the file and simply quit (with :q!).
Start vi again normally; recovery is not possible here. Linux users should note that in these situations,
they need to delete the file having a . swp extension manually; otherwise the file will not be editable.

Table 7.2 Save and Exit Commands of the ex Mode

Command Action

W Saves file and remains in editing mode

X Saves file and quits editing mode

'wg As above

'w n2w.pl Like Save As in Microsoft Windows

:w! nZw.pl As above, but overwrites existing file

:q Quits editing mode when no changes are made to file
:q! Quits editing mode but after abandoning changes
:nl ,n2w build.sql Writes lines n/ to n2 to file build.sqgl

:.w build.sql Writes current line to file build.sql

:$w build.sql Writes last line to file build.sq]

slemd Runs emd command and returns to Command Mode
:sh Escapes to UNIX shell

:recover Recovers file from a crash

7.4 NAVIGATION

We’ll now consider the functions of the Command Mode. This is the mode you come to when you
have finished entering or changing your text. A Command Mode command doesn’t show up on
screen but simply performs a function. We begin with navigation. Don'’t forget to avoid the cursor
control keys for navigation as advised in Section 7.1.3.

7.4.1 Movement in the Four Directions (h, j, k and 1)

vi provides the keys h, j, k and 1 to move the cursor in the four directions. These keys are placed
adjacent to one another in the middle row of the keyboard. Without a repeat factor, they move the
cursor by one position. Use these keys for moving the cursor vertically:

k Moves cursor up

A Moves cursor down
To move the cursor along a line, use these commands:

h Moves cursor left

1 Moves cursor right

The vi Editor @

This is the vi fullscreen editor from UCB
X

This is the vi full§icreen editor from UCB

\

This is the vi $ullscreen editor from UCB

v‘l:

This is the vi @creen editor from UCB

Four spaces back

Fig. 7.12 Deleting Text with x

7.5.1 Deleting Text (x and dd)

The simplest text deletion is achieved with the x command. This command deletes the character
under the cursor. Move the cursor to the character that needs to be deleted and then press

X Deletes a single character

The character under the cursor gets deleted, and the text on the right shifts left to fill up the space.
A repeat factor also applies here, so 4x deletes the current character as well as three characters from
the right (Fig. 7.12).

A Windows Notepad user would be surprised to note that when the cursor is at the end of a line, x
doesn’t pull up the following line but works instead on text on the left of the cursor. Deletion of text
from the left is otherwise handled by the X command. Keep it pressed, and you'll see that you have
erased all text to the beginning of the line.

Entire lines are removed with the dd “command” (rather a doubled operator). Move the cursor to
any line and then press

dd Cursor can be anywhere in line

6dd deletes the current line and five lines below. Fig. 7.13 illustrates the use of dd both with and
without a repeat factor. There are other forms of deletion available in vi and you’ll know them all
after you have understood the d operator well (20.1.1).

7.5.2 Moving Text (p)

Text movement requires you to perform an additional task: Put the text at the new location with p
or P. vi uses these two commands for all “put” operations that follow delete or copy operations. The
significance of p and P depends on whether they are used on parts of lines or complete lines. We
need some examples to illustrate their behavior.

The vi Editor @

searches backward for the most previous instance of the pattern. The wraparound feature also
applies here but in the reverse manner.

7.8.1 Repeating the Last Pattern Search (n and N)

The n and N commands repeat a search where n and N don’t exactly play the roles you'd expect
them to. For repeating a search in the direction the previous search was made with / or ?, use

n Repeats search in same direction of original search

The cursor will be positioned at the beginning of the pattern. In this way, you can press n repeatedly
to scan all instances of the string. N reverses the direction pursued by n, which means that you can
usc it to retrace your search path. The search and repeat actions are illustrated in Fig. 7.14 and the
commands are summarized in Table 7.3.

Note: n doesn't necessarily repeat a search in the forward direction; the direction depends on the search
command used. If you used ?printf to search in the reverse direction in the first place, then n also
follows the same direction. In that case, N will repeat the search in the forward direction, and not n.

Tip: The three commands, / (search), n (repeat search) and . (repeat last editing command), form a
wonderful trio of search—search-repeat—edit-repeat commands. You'll often be tempted to use this
trio in many situations where you want the same change to be carried out at a number of places.

For instance, if you want to replace some occurrences of int with double, then first search for int with
/int, change int to double with 3s, repeat the search with n, and press the . wherever you want the
replacement to take place. Yes, you wouldn't like printf to also show up (int is embedded there),
which means you need to use a reqular expression to throw printf out. Like more, vi also recognizes
regular expressions as search patterns; these expressions are first discussed in Section 13.2.

B §f [-z "$pname"]
/echo [Bier] then
—» [Bcho "You have not entered the string"
— exit 1

n /E—:ISE

N ficho "Enter the file to be used: \c"
n o " read flname
if [! -n "$fIname"] ; then

N b P Bcho "You have not entered the filename" ; exit 2
else

Fig. 7.14 Search and Repeat with / and n

. UNIX: Concepts and Applications

7.1 You pressed 50k to move the cursor 50 lines up but you see 50k input as text. What mistake did
you make and how do you remove the three characters?

7.2 How will you replace has with have in the current line?

7.3 How will you insert a line (i) above the current line, (ii) below the current line?
7.4 How do you abort an editing session?

7.5 Name three ways exiting a vi session after saving your work.

7.6 How will you guickly move to the fifth word of a line and replace its four characters with the
string counter?

7.7 Find out the number of words in this string as interpreted by (i) vi,
(ii) we—29.02.2000 is_last_day of February.

7.8 In the current line, how do you take your cursor to (i) the 40th character, (ii) the beginning,
(iii) the end?

7.9 Explain which of the following commands can be repeated or undone: (i) 40k (ii) [Crl-f] (iii) 5x iv) J

7.10 You have wrongly entered the word Comptuer. How will you correct it to Computer?

7.11 From a conceptual point of view, how are d and y different from Command Mode commands
like j and $2

7.12 How do you combine five lines into a single line?

Copyrighted material

7.13

7.14

The vi Editor

How will you search for a pattern printf and then repeat the search in the opposite direction
the original search was made?

Every time you press a . (dot), you see a blank line inserted below your current line. Why does
that happen?

Flex Your Brain

7.1
7.2
7.3
7.4

7.5
7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

Name the three modes of vi and explain how you can switch from one mode to another.
How will you add /* ot the beginning of a line and */ at the end?
How do you remove the characters that you just inserted above without using the undo feature?

How do rol;l move to line number 100 and then write the remaining lines (including that line)
to a separate file?

vi refuses to quit with :q. What does that indicate and how do you exit anyway?

Explain what the following commands do: (i) :.,10w foo (ii) :$w! foo. In which mode are the
commands executed and what difference does it make if foo exists?

Assuming that the cursor is at the beginning of the line, name the commands required to
replace (i) echo 'Filename: \c' with echo -n “"Filename: " (i) printf("File not found\n);
with fprintf(stderr, "File not found\n");

In the midst of your work, how can you see the list of users logged in? If you have a number of
UNIX commands to execute, which course of action will you take?

Name the sequence of commands to execute to move to the line containing the string #include,
deleting four lines there, and then placing the deleted lines at the beginning of the file.

Mention the sequence of commands to execute that will replace printf(with fprintf(stderr,?
How will you repeat the action globally?

How do u and U differ? When will U fail to work?

Name the commands required to noninteractively replace all occurrences of cnt with count in
(i) the first 10 lines, (ii) the current line, (iii) all lines. How do you repeat the exercise in an
interactive manner?

If the power to the machine is cut off while a vi session is active, how does it affect your work?
What salvage operation will you try?

You made some changes to a read-only file ond then find that you can't save the buffer. What
course of action will you take without quitting the editor?

Copy /etc/passwd to passwd. Name the vi commands required to save the first 10 lines in
passwdl, the next 10 in passwd2 and the rest in passwd3.

List the editing and navigation commands required to convert the following text:
include<errno.h>
}rn'id quit (char *message)

printf("Error encountered\n");
printf("error number %d, ", errno);

Ii_ﬁu UNIX: Concepts and Applications
printf("quitting program\n");
exit(1):

}

to this:

#include <stdio.h>

#include <errno.h>

void quit (char *message, int exit_status) {
/* printf("Error encountered\n"); */
fprintf(stderr, "Error number %d, quitting program\n", errno);
exit(exit_status);

8
The Shell

This chapter introduces the agency that sits between the user and the UNIX system. It is called the
shell. All the wonderful things that you can do with UNIX are possible because the shell does a lot
of work on our behalf that could be tedious for us to do on our own. The shell looks for some
special symbols in the command line, performs the tasks associated with them and finally executes
the command. For example, it opens a file to save command output whenever it sees the > symbol.

The shell is a unique and multi-faceted program. It is a command interpreter and a programming
language rolled into one. From another viewpoint, it is also a process that creates an environment
for you to work in. All of these features deserve separate chapters for discussion, and you'll find the
shell discussed at a number of places in this book. In this chapter, we focus on the shell’s basic
interpretive activities. We have seen some of these activities in previous chapters (like rm * or
1s | wc), but it is here that we need to examine them closely.

r— WHAT You WILL LEARN

o An overview of the shell’s interpretive cycle.

¢ The significance of metacharacters and their use in wild-cards for matching multiple filenames.
¢ The use of escaping and quoting to remove the meaning of a metacharacter.

e The significance of the three standard files (streams) that are available to every command.

» How the shell manipulates the default source and destination of these streams to implement
redirection and pipelines.

« Understand what filters are and why they are so important in UNIX.
e The significance of the files /dev/null and /dev/tty.

o The use of command substitution to obtain the arguments of a command from the standard
output of another.

« Shell variables and why they are so useful.

r— TOPICS OF SPECIAL INTEREST
e The difference between use of double and single quotes.

e The importance of making the command ignorant of the source of its input and destination of
its output.

The Shell "ﬁl

Note: DOS/Windows users may be surprised to know that the * may occur anywhere in a filename and
not merely at the end. Thus, *chap* matches all the following filenames—chap newchap chap(3
chap03.txt.

Caution: Be careful when you use the * with rm to remove files. You could land yourself in a real mess
if, instead of typing rm *.o which removes all the C object files, you inadvertently introduce a space
between * and .o:

$rm* .0 Very dangerous!
rm: .0: No such file or directory

The error message here masks a disaster that has just occurred; rm has removed all files in this directory!
In such situations, you should pause and check the command line before you finally press [Enter].

The next wild-card is the ?, which matches a single character. When used with same string chap
(chap?), the shell matches all five-character filenames beginning with chap. Appending another ?
creates the pattern chap??, which matches six-character filenames. Use both expressions separately,
and the meaning becomes obvious:

$ 1s chap?

chapx chapy chapz

$ 1s chap??

chap0l chap02 chap03 chap04 chapl5 chaplé chapl?

Both the * and ? operate with some restrictions that are taken up in the next topic.

8.3.2 Matching the Dot

The behavior of the * and ? in relation to the dot isn’t as straightforward as it may seem. The *
doesn’t match all files beginning with a . (dot) or the / of a pathname. If you want to list all
hidden filenames in your directory having at least three characters after the dot, the dot must
be matched explicitly:

$ 1s .727*
.bash_profile .exrc .netscape .profile

However, if the filename contains a dot anywhere but at the beginning, it need not be matched
explicitly. For example, the expression emp*1st matches a dot embedded in the filename:

$ 1s emp*1st
emp.lst empl.1st emp22lst emp2.lst empn.lst

Note: There are two things that the * and ? can't match. First, they don't match a filename beginning
with a dot, but they can match any number of embedded dots. For instance, apache*gz matches
apache 1.3.20.tar.gz. Second, these characters don't match the / in a pathname. You can't use
cd /usr?local to switch to /usr/local.

The Shell 193 |

$ rm chap0\[1-3\]
$ 1s chap0\[1-3\]
chap0[1-3] not found File removed

Escaping the Space Apart from metacharacters, there are other characters that are special—like
the space character. The shell uses it to delimit command line arguments. So to remove the file
My Document.doc which has a space embedded, a similar reasoning should be followed:

rm My\ Document.doc Without the \ rm would see two files

Escaping the \ Itself ~ Sometimes you may need to interpret the \ itself literally. You need another
\ before it, that's all:

$ echo \\

\

$ echo The newline character is \\n
The newline character is \n

Escaping the Newline Character The newline character is also special; it marks the end of the
command line. Some command lines that use several arguments can be long enough to overflow
to the next line. To ensure better readability, you need to split the wrapped line into two lines, but
make sure that you input a \ before you press [Enter/:

$ find /usr/local/bin /usr/bin -name "*.p1" -mtime +7 -size +1024 \[Enter|
> -size -2048 -atime +25 -print Note the >

This is the find command at work, a command often used with several arguments. The \ here
escapes the meaning of the newline character generated by [Enter]. It also produces the second
prompt (which could be a > or a ?), which indicates that the command line is incomplete. Command
lines involving multiple commands (as in pipelines) can also be very long. For better readability,
you should split them into multiple lines wherever possible.

Note: The space, \ and LF (the newline character generated by [Enter]) are also special and need to be
escaped if the shell is to be prevented from interpreting them in the way it normally does.

8.4.2 Quoting

There’s another way to turn off the meaning of a metacharacter. When a command argument is
enclosed in quotes, the meanings of all enclosed special characters are turned off. Here's how we
can run some of the previous commands, using a mix of single- and double-quoting this time:

echo '\' Displays a \
rm 'chap*' Remouves file chap*
rm "My Document.doc" Remouves file My Document.doc

Escaping also turns out to be a tedious affair when there are just too many characters to protect.
Quoting is often a better solution. The following example shows the protection of four special
characters using single quotes:

$ echo 'The characters |, <, > and § are also special’
The characters |, <, > and § are also special

The Shell g

The shell can effect redirection of this stream when it sees the > or >> symbols in the command
line. You can replace the default destination (the terminal) with any file by using the > (right
chevron) operator, followed by the filename:

$ wc sample.txt > newfile
$ cat newfile
3 14 71 sample.txt

The first command sends the word count of sample. txt to newfile; nothing appears on the terminal
screen. If the output file doesn’t exist, the shell creates it before executing the command. If it exists,
the shell overwrites it, so use this operator with caution. The shell also provides the >> symbol (the
right chevron used twice) to append to a file:

wc sample.txt >>newfile Doesn’t disturb existing contents

HOW IT WORKS: How Output Redirection Works

P

Command: wc sample.txt > newfile
1. On seeing the >, the shell opens the disk file, newfile, for writing.
2. It unplugs the standard output file from its default destination and assigns it to newfile.
3. we (and not the shell) opens the file sample. txt for reading.
4, we writes to standard output which has earlier been reassigned by the shell to newfile.

And all this happens without we knowing that it is in fact writing to newfile! Any command that uses
standard output is ignorant about the destination of its output also.

Redirection also becomes a useful feature when concatenating the standard output of a number of
files. The following example that uses a wild-card saves all C programs in a single file:

cat *.c > c_progs_all.txt

This concatenated output stream provides no visual indication of the name of the files, so we can
do somewhat better by preceding this output with a list of filenames. A single > does the job, but
this requires the use of the (and) symbols for grouping commands:

(1s -x *.c ; echo ; cat *.c) > c_progs_all.txt
The echo command in the middle serves to insert a blank line between the multicolumn file list
and the code listings. The program names now feature in the front page, so you have a table of
contents preceding vour code listings. But better still would be to precede each program listing
with its filename. You can do this using a loop construct after you have learned shell programming.

The standard output of one command can also be used by another command as its standard input.
This is the third destination of standard output and is taken up in the discussion on pipes (8.7).

Mote: When the output of a command is redirected to a file, the output file is created by the shell before
the command is executed. Any idea what cat foo > foo does?

The Shell 161 I

Why did we run cmp to compare two files if we are not interested in its output? Later, you’ll learn
how to examine a special shell variable ($?) to know whether two files are identicai or not. It’s this
value that we are often interested in and not the actual output that lists the differences.

/dev/tty The second special file in the UNIX system is the one indicating one’s terminal—
/dev/tty. But make no mistake: This 1s not the file that represents standard output or standard error.
Commands generally don’t write to this file, but you’ll need to redirect some statements in shell
scripts to this file.

Consider, for instance, that romeo is working on terminal /dev/pts/1 and juliet on /dev/pts/2.
However, both romeo and juliet can refer to their own terminals with the same filename—
Jdev/tty. Thus, if romeo issues the command

who >/dev/tty

the list of current users is sent to the terminal he is currently using—/dev/pts/1. Similarly, juliet
can use an identical command to see the output on her terminal, /dev/pts/2. Like /dev/null,
/dev/tty can be accessed independently by several users without conflict.

You may ask why one should need to specifically redirect output to one’s own terminal since the
default output goes to the terminal anyway. The answer 1s that sometimes you need to specify that
explicitly as the following real-world example suggests.

Consider redirecting a shell script to a file, say, by using foo.sh > redirect.txt. Redirecting a
script implies redirecting the standard output of all statements in the script. That's not always
desirable. Your script may contain some echo commands that provide helpful messages for the
user, and you would obviously like to see them on the terminal. If these statements are explicitly
redirected to /dev/tty inside the script, redirecting the script won't affect these statements. We'll
use this feature later in our shell scripts.

Apart from its use in redirection, /dev/tty can also be used as an argument to some UNIX
commands. Section 8.8 makes use of this feature, while some situations are presented in
Chapter 14 (featuring shell programming).

Note: The size of /dev/null is always zero and all terminals can be represented by /dev/tty.

8.7 PIPES

Standard input and standard output constitute two separate streams that can be individually
manipulated by the shell. If that be so, can’t the shell connect these streams so that one command
takes input from the other? That is not only possible but forms the cornerstone of the building-
block approach that UNIX advocates to solve all text manipulation problems.

You know the who command produces a list of users, one user per line. Let’s use redirection to save
this output in a file:

|1EB UNIX: Concepts and Applications

8.10.2 Where to Use Shell Variables

Setting Pathnames If a pathname is used several umes in a script, you should assign it to a
variable. You can then use it as an argument to any command. Let’s use it with ¢d in this manner:
$ progs='/home/kumar/c_progs"

$ cd $progs ; pwd
/home/kumar/c_progs

A shell script would generally contain this definition at the beginning, and then it could be used
everywhere—both in the script and in other scripts run from that script. It means lesser typing, but
there's another advantage. In a later reorganization, if the location of ¢_progs changes to, say,
/export /home/kumar/c_progs, then you simply need to change the variable definition, and everything
will work in the same way as before.

Using Command Substitution You can also use the feature of command substitution to set
variables:

$ mydir="pwd™ ; echo $mydir
/home /kumar/c_progs

You can store the size of a file in a vaniable too:

size="wc -c < foo.txt"

We used the <symbol to leave out the filename in the value assigned to size. If we had used foo.txt
as an argument instead, size would have contained a two-word string.

Concatenating Variables and Strings In your shell scripts, you’ll often need to concatenate a
variable with another variable or string. In a later chapter, we'll use this feature to change a file’s
extension. To concatenate two variables you can either place them side by side:

base=foo ; ext=.c Two assignments in one line
file=$basefext This is foo.c

or use curly braces to delimit them:
file=${base}fext

In either case, you can finally run a compilation command in this way:
cc -o $base $file Creates executable foo from foo.c

A similar technique can be used to concatenate a variable and a string. Note that some situations
require you to use quotes:

file=$base'.c' This is foo.c; quotes not required
file=§{base}.c Same but more readable
file=$base'01’ This is foo0l; quotes required

simple Filters ml

Test Your Understanding

12.1

12.2
12.3

12.4

12.5
12.6
12.7

12.8

12.9

How will you (i) doublespace a file, (i} produce a list of all files in the current directory without
headers but in three columns?

What happens when you use head with multiple filenames?
How do you display the ps output without the header line?

You need to run a program, a.out, that continuously writes to a file foo. How will you run the
program and then monitor the growth of this file from the same terminal?

Will this command work? cut -d: -c1 -f2 foo
Write a sort sequence to order emp. 1st on the month of birth.

Produce from emp.1st, a list of the birth years along with the number of people born in
that year.

Generate a numbered code list for the departments in shortlist in the form code_number
code_description (like 1 admin).

Devise a sequence to reset the PATH variable so that the first directory is removed from its list.

12.10 How do you remove repeated lines from an unsorted file where the repected lines are

(i) contiguous, (i} not contiguous?

12.11 How do you convert the contents of the file emp.1st to uppercase?

Flex Your Brain

12.1
12.2
12.3
12.4

12.5

12.6
12.7
12.8
12.9

How will you use pr, sort and cut to read a file in reverse?
Write a Korn or Bash shell alias that always brings up the last modified file for editing with vi.
How do you select from a file (i) lines 5 to 10, (ii) last but one line?

How do you display the date output with each field on a separate line?2 How do you now join
the fields to get back the original output?

How do you display a list of all processes without the ps header line where processes with the
same name are grouped together?

How will you find out the number of times the character ? occurs in a file?
Extract the names of the users from /etc/passwd after ignoring the first 10 entries.
How do you display a listing of all directories in the PATH list?

Devise a sort command to order the file /etc/passwd on GID (primary) and UID (secondary)
so that users with the same GID are placed together. Users with a lower UID should be placed
higher in the list.

12.10 Devise a pipeline which lists the five largest files in the current directory.

12.11 Use a pipeline and command substitution to set the length of a line in emp.1st to a variable.

12.12 You have two files, fool and foo2, copied from two /etc/passwd files on two machines. How

do you print a list of users who are (i) present in fool but not in foo2, (ii) present in foo2 and not
in fool, (iii) present in both files?

E, UNIX: Concepts and Applications

12.13 Assuming that a user may be logged in more than once, how do you (i} list only those users,
(ii) mail root a sorted list of all users currently logged in, where a user is mailed only once?

12.14 How are these two commands similar and different? sort -u foo ; unig foo

12.15 Afeature provided in a user’s startup file appends the output of the date command to a file foo

whenever a user logs in. How can the user print a report showing the day along with the
number of times she logged in on that day?

Essential Shell Programming 277 I

14.6 THE if CONDITIONAL

The if statement makes two-way decisions depending on the fulfillment of a certain condition. In

the shell, the statement uses the following forms, much like the one used in other languages:

if command is successful
then
execute commands

if command is successful
then

execiete commands

if command is successful
then

execute (U‘HHHHHHTJT

else fi elif command is successful
execute commands then...
fi else...
fi
Form 1 Form 2 Form 3

As in BASIC, if also requires a then. [t evaluates the success or failure of the command thar 1s
specified in its “command line.” If command succeeds, the sequence of commands following it is
executed. If command fails, then the else statement (if present) is executed. This statement is not
always required, as shown in Form 2. Every 1f1s closed with a corresponding fi, and you'll encounter
an error if one is not present,

What makes shell programming so powertful is that a command’s exit status solely determines the
course of action pursued by many of the shell’s important constructs like 1f and while. All commands

return an exit status as we saw with cat and grep, so you can imagine where shell programming
can lead us.

In the next script, emp3.sh (Fig. 14.4), grep is first executed and a simple if-else construct tests the
exit status of grep. This time we'll search /etc/passwd for the existence of two users; one exists in
the file and the other doesn’t:

$ emp3.sh ftp

ftp:*:325:15:FTP User: /usersl/home/ftp:/bin/true
Pattern found - Job Qver

$ emp3.sh mail

Pattern not found

#1/bin/sh
emp3.sh: Using if and else
#
if grep "~$1" /etc/passwd 2>/dev/null # Search username at beginning of Tine
then
echo "Pattern found - Job Over"
else
echo "Pattern not found"
fi

Fig. 14.4 emp3.sh

E?ﬁ UNIX: Concepts and Applications

We'll discuss the third form of the 1f statement when we discuss test. The condition placed in the
command line of the 1f statement will henceforth be referred to as the control command. You can
use if in this way with any executable program. Amazing power indeed!

14.7 USING test AND [] TO EVALUATE EXPRESSIONS

When you use if to evaluate expressions, you need the test statement because the true or false
values returned by expressions can’t be directly handled by 1f. test uses certain operators to evaluate
the condition on its right and returns either a true or false exit status, which is then used by if for
making decisions. test works in three ways:

. Cnmparcs two numbers,

« Compares two strings or a single one for a null value.
o Checks a file’s attributes.

These tests can be made by test in association with the shell’s other statements also, but for the
present we'll stick with if. test doesn’t display any output but simply sets the parameter §7. In the
following sections, we'll check this value.

14.7.1 Numeric Comparison

The numerical comparison operators (Table 14.2) used by test have a form different from what
you would have seen anywhere. They always begin with a - (hyphen), followed by a two-letter
string, and enclosed on either side by whitespace. Here's a typical operator:

-ne Not equal

The operators are quite mnemonic; -eq implies equal to, -gt implies greater than, and so on.
Numeric comparison in the shell is confined to integer values only; decimal values are simply
truncated. To illustrate how numeric tests are performed, we'll assign some values to three variables
and numerically compare them:

$ x=5; y=7; z=7.2

$ test $x -eq $y ; echo $7

1 Not equal

$ test $x -1t $y ; echo §?

0 True

$ test $z -gt $y ; echo $?

1 7.2 is not greater than 7!
$ test $z -eq Sy ; echo §?

0 7.2 is equal to 7!

The last two tests prove conclusively that numeric comparison is restricted to integers only. Having
used test as a standalone feature, you can now use it as if’s control command. The next seript,
emp3a.sh (Fig. 14.5) uses test in an if-elif-else-fi construct (Form 3) to evaluate the shell
parameter, $#. It displays the usage when no arguments are input, runs grep if two arguments are
entered and displays an error message otherwise.

17

Networking Tools

The realization that standalone computers made no sense made the network possible. When there
were too many of them, people realized that standalone networks made little sense either, and that
they also needed to talk to one another. UNIX has played a predominant role in the development of
TCP/IP as a communications technology. Network communication became so pervasive that the
technology was ultimately made available to all operating systems and eventually led to the formation
of the Internet. The Net is running on TCP/IP since 1983.

This chapter discusses the tools used in a TCP/IP network. Some of these tools, like telnet and
ftp, belong to the original DARPA set which we cover only briefly. Rather, we’ll examine the basics
of cryptography, and how its principles are incorporated into the secure shell (SSH). We also need
to study the mechanism behind email and the Web service, and how both applications have benefited
from MIME technology.

r—— WHAT YOoU WILL LEARN

¢ The basics of TCP/IP and the way it splits data into packets before reassembling them.
e Understand how a host is addressed by the hostname and IP address.

¢ The function of /etc/hosts in resolving hostnames to IP addresses.

o Use telnet and ftp for remote login and file transfer.

e The concept of domains and the Internet domain hierarchy.

» The role of name servers, resolvers and a distributed database in performing hostname-IP address
mappings.
¢ The role of hypertext, URL and HTML in the HT'TP protocol.

r— TOPICS OF SPECIAL INTEREST

o The basics of eryprography.

o The use of symmetric and asymmetric keys for encryption and decryption.

e The mechanism behind SSH (the secure shell) and the tools ssh, slogin, sftp and scp.
¢ The significance of daemons and ports in the client-server scheme.

The X Window System .

16.10.2 The -xrm Option: Overriding the Resources

There are situations when you need not only to ignore the systemwide default settings but also the
ones you have put in your .Xdefaults. A specific instance of an application may also require a
diﬂ"ﬁrtﬂt_setting. You can sometimes override these settings by invoking the command with suitable
options. However, not all resources have corresponding option equivalents, but a special option
-xrm can let you specify any resource value. For example, you can change the background color of
xclock with the -bg option. But you can also use the resource specification for the class:

xclock -xrm 'xclock*background: lightblue' &

Besides these simple resources, there are other settings related to the translation of events. A typical
event could be the interpretation of mouse clicks or movements. They are not at all intuitive and a
discussion on them is beyond the scope of this text.

16.11 CONCLUSION

Even if you are a habitual command line user, you'll often need to use X to view PDF and Postscript
documents. This chapter covered X briefly simply because it is not central to the UNIX philosophy.
We discussed just as much of X as is needed to use the file manager, view the documentation,
handle multimedia mail attachments and browse the World Wide Web. We would be discussing
the last two functions in Chapter 17.

WRAP UP

Copyrighted material

I;Sﬁ' UNIX: Concepts and Applications

X programs run with a number of common options. You can pesition and specify the size and
position of a window (-geometry) and its foreground and bockground colors (-fg and -bg). You
can start a program os an icon (-icon) and provide a name (-name) or fitle (-title).

. There are several clients available in X. The most commonly used client is the file manager that
~ functions like Microsoft Windows Explorer. X offers a clock (xelock) and a calculator (xcale).
xload displays the system load and is often used with remote machines. xkill kills a window. ‘

X can be easily customized. You can start X clients from ~/.xinitrc, the startup file used by
xinit. X resources enable you to change practically any X feature. These features can be stored |
in ~/.Xdefaults, and xrdb can be used any time to read this file. These seftings can also be
overridden with the -xrm option available in every X client. ;

Test Your Understanding

16.1 What does an X display comprise?

16.2 Who places the frames, borders and butfons on the windows? Is it a server or a client?
16.3 Can an X client like xterm running on a Solaris machine display its output on a HP-UX machine?
16.4 How is text copied in an xterm window?

16.5 What is the function of the xhost command? What does xhost + signify?

16.6 What circumstances led to the development of the CDE2

16.7 What is the function of the four rectangles that you see on the Front Panel at the center of
Fig. 16.22

16.8 What happens if all the commands in .xinitrc are placed in the background?

16.9 How will you override a resource setting when invoking a client?

Flex Your Brain
16.1 How does X solve the problem of running the same program on displays having different
characteristics?
16.2 How is the client-server mechanism in X different from others?
16.3 Explain the role of the window manager in X. Can you work without it2
16.4 Describe how text is copied using (i) the general features of X, (i) xclipboard.

16.5 How can romeo running Netscape on his machine safurn write its output to juliet’s display on
a remote machine vranus? Do both users need to run X2

16.6 How is the DISPLAY variable more convenient fo use than the -display option?

Networking Tools 373 l

mime. types on the sender’s side and mai1cap on the receiver’s side. When you attach a PDF document
to an outgoing message, your MUA looks up the file’s extension in mime.types to determine the
Content-Type header. Here's a sample entry for a PDF file (extension: . pdf):

application/pdf pdf

The MUA sets the content type for the PDF portion of the message to application/pdf. At the
receiving end, the MUA may not have the capability to handle this content type. It then looks up the
file mailcap for the helper application (an external program) that is specified for this content type.
Here’s an entry from this file:

application/pdf; acroread %s Note the delimiter 15

This entry directs the MUA to call up the Acrobat Reader to view the PDF document. Many UNIX
systems maintain a systemwide mai 1 cap database in /etc, but many MUAs (like Netscape Messenger)
maintain their own. If mailcap doesn’t specify a helper application for a content type, then the
MUA would seek your approval for saving the file to disk.

Even though MIME was designed to make it possible to deliver multimedia attachments with mail
messages, the standard applies equally well to newsgroup messages and Web resources. We'll revisit

MIME when we discuss HT'TP.

17.13 THE WORLD WIDE WEB

The World Wide Web is the Internet’s latest and finest service yet. It was originally conceived by
Tim Berners-Lee at CERN, Switzerland as a simple mechanism for interconnecting documents
spread across the globe. It quickly went beyond the original vision of its creator, and today functions
as a “one-stop shop” for practically everything that’s discussed in this chapter. The Web kept the
traditional Internet services (email, anonymous FTP and Net News) alive, but completely obsoleted
its immediate ancestors, Archie and Gopher.

Even though the Web appears to be a conglomeration of multiple services, it works within the
framework of the simple client-server model. Web service uses the Hyper Text Transfer Protocol
(HTTP), and Web servers, also known as HTTP servers listen for requests at port 80. The Web's
access (client) tool is called the browser. A Web browser fetches a document (or any resource)
residing on Web servers and formats it using the formatting instructions provided in the document
itself. It also displays pictures if they are in GIF, JPEG or PNG formats. If there’s a format it can’t
understand, it will call up a plugin or a helper application to handle it.

The World Wide Web is indeed a “web”™—a vast collection of linked hypertext documents. This
linkage is based on the understanding that if a resource is available on one server, it makes no sense
to have it on another. These links are specified by Uniform Resource Locators (URLs). In this way,
the user “wanders and roams” without needing to know where she is, and initiates a new connection
with a simple keystroke or mouse click.

Web documents are written in the Hyper Text Markup Language (HTML), a text-based portable
language. HTML can highlight any portion of text to be displayed with some attributes (like bold,

Networking Tools ﬂ

Fig. 17.2 An HTML Document Viewed with Netscape

browser fetches the images the tags link to—using a single Keep-Alive connection, wherever possible.
Every browser is also expected to offer these features:

« Step back and forth through documents viewed in a session.

o Save HTML files (and graphics) to the local machine.

» Bookmark important URL:s so they can be fetched later without actually entering the URL.

e Support other application protocols like FTP and TELNET.

« Automatically invoke helper applications and special software (plugins) when encountering a

file format it can’t handle.

Like email clients, the earliest Web browsers were character-based, and the 1ynx browser remained
popular until the advent of graphics. Netscape Navigator/Mozilla is the standard graphic browser
for UNIX and Linux systems today.

17.14 MULTIMEDIA ON THE WEB: MIME REVISITED

Web documents today feature a variety of multimedia objects like Java applets, RealAudio, RealVideo
and Shockwave technology. MIME technology (17.12) also applies to multimedia files on the Web.
However, these files are sent by Web servers not as multipart messages but as independent files. The
server sends the content type to the client before it sends the file by looking up the file mime. types
that associates the content type with the file's extension, as shown below for a PDF document:

Y NIGNEEa mMaieridl

3?8 UNIX: Concepts and Applications

type=application/acrobat exts=pdf Solaris
application/pdf pdf Linux

When a browser encounters an unfamiliar data format, it first sees whether there is a plugin in its
arsenal. A plugin is a piece of software installed (“plugged”) in the browser. It is normally small in
size and has the minimal features required for simple viewing (or, in case of audio and video,
playing). You can’t invoke a plugin separately as you can call up a helper application (explained
next) like Acrobat Reader. When a file is viewed with a plugin, it appears inline with the HTML
text, and not in a separate window.

If the browser is not able to locate a plugin for a specific content type, it looks upmailcap to determine
the helper application. This is a separate standalone application that can also be invoked separately
from the UNIX command line. We saw one entry in this file in Section 17.12 that specified acroread
(the executable for Acrobat Reader) for application/pdf. Unlike in Windows, UNIX Netscape/
Mozilla doesn’t have this file configured well, so you'll have to fill it up yourself.

17.15 CONCLUSION
Even though networking wasn’t part of the original UNIX scheme of things, UNIX provided the

platform for its development. Many of the features found in the networking tools have their roots in
UNIX. Thus, it would be fair to state that UNIX is the language of the Internet. In a sense, the

Internet continued the good work done by the UNIX architects, one reason why this giant bubble
didn’t finally burst.

TCP/IP splits data into packets and ensures reliable transmission with full error control. Packets
~ are routed between hosts of two networks using a router which is part of both networks.

Every host in a network is represented by a unique hostname and a unique IP address. An IP
address consists of four dot-separated octets. The name-address mappings are kept in /etc/
hosts on all machines of a small network.

TCP/IP works in the client-server model. Server programs are known as daemons, which run in
the background and listen for request at certain ports. Servers use fixed port numbers for a
service, but clients use random port numbers at their end.

The DARPA set of TCP/IP applications comprise telnet and ftp. telnet is used to run commands
on a remote machine and have the display on the local machine. ftp is meant for file transfer.
You can upload one or more files (put and mput) or download them (get and mget).

The secure shell is more secure than telnet and ftp os it encrypts the entire session including the
password. It uses a symmetric key for encryption of bulk data, but uses asymmetric keys (public
and private) for host and user authentication and key distribution. You can login in o secure
manner (ssh and slegin), transfer files (scp and sftp) and run @ command remotely (ssh).

Large networks and the Infernet use the Domain Name System (DNS] where each host is represented
by its fully qualified domain name (FQDN). The FQDN-IP address mappings are maintained across
a number of name servers which are queried by a resolver to obtain the IP address of o host.

awk—An Advanced Filter 383'

18.2 SPLITTING A LINE INTO FIELDS

awk uses the special parameter, $0, to indicate the entire line. It also identifies fields by $1, $2, $3.
Since these parameters also have a special meaning to the shell, single-quoting an awk program
protects them from interpretation by the shell.

Unlike the other UNIX filters which operate on fields, awk uses a contiguous sequence of spaces
and tabs as a single delimiter. But the sample database (12.1) uses the |, so we must use the -F
option to specify it in our programs. You can use awk to print the name, designation, department
and salary of all the sales people:

$ awk -F"|" '/sales/ { print $2,$3,$4,56 }' emp.1st

a.k. shukla g.m. sales 6000
chanchal singhvi director sales 6700
s.n. dasgupta manager sales 5600
anil aggarwal manager sales 5000

Notice thata , (comma) has been used to delimit the field specifications. This ensures that each
field is separated from the other by a space. If you don’t put the comma, the fields will be
glved rogether.

So far, the programs have produced readable output, but that is because the file emp.1st contains
fixed-length lines. Henceforth, the input for most awk programs used in this chapter will come
from the file empn.1st which we created with sed in Section 13.10. This file is similar to emp.1st
except that the lines are of variable length. A few lines of the file show the total absence of spaces
around the |:

$ head -n 2 empn.l1st
3212|shyam saksena|d.g.m.|accounts|12/12/55|6000|6213
6213 |karuna ganguly|g.m.|accounts|05/06/62|6300|6213

With this file as input, we’ll use awk with a line address (single or double) to select lines. If you
want to select lines 3 to 6, all you have to do is use the built-in variable NR to specify the line
numbers:

$ awk -F"|" 'NR == 3, NR == 6 { print NR, $2,$3,36 }' empn.lst
3 n.k. gupta chairman 5400

4 v.k. agrawal g.m. 9000

5 j.b. saxena g.m. 8000

6 sumit chakrobarty d.g.m. 6000

This is awk’s way of implementing the sed instruction 3,6p. The statement NR == 3 is really a
condition that is being tested, rather than an assignment; this should appear obvious to C
programmers. NR is one of those built-in variables used in awk programs, and == 1s one of the many
operators employed in comparison tests.

Note: awk is the only filter that uses whitespace as the default delimiter instead of a single space or tab.

EM UNIX: Concepts and Applications

18.3 printf: FORMATTING OUTPUT

The above output is unformatted, but with the C-like printf statement, you can usc awk as a
stream formatter. awk accepts most of the formats used by the printf function used in C, but in this
chapter, the %s format will be used for string data, and %d for numeric. You can now produce a list
of all the agarwals:

$ awk -F"|" '/[aA]gg?[ar]+wal/ {
> printf "%3d %-20s %-12s %d\n",NR,$2,$3,$6 }' empn.lst

4 v.k. agrawal g.m. 9000
9 sudhir Agarwal executive 7500
15 anil aggarwal manager 5000

Like in sed, an awk command is considered complete only when the quote is closed. The name and
designation have been printed in spaces 20 and 12 characters wide, respectively; the - symbol left-
justifies the output. The line number is three characters wide, right-justified. Note that printf
requires \n to print a newline after each line. Using the various formats in an awk program, you can
have complete control over the way the output is presented.

18.3.1 Redirecting Standard Output

Every print and printf statement can be separately redirected with the > and | symbols. However,
make sure the filename or command that follows these symbols is enclosed within double quotes.
For example, the following statement sorts the output of the printf statement:

printf "%s %-10s %-12s %-8s\n", $1, $3, $4, $6 | "sort"
If you use redirection instead, the filename should be enclosed in quotes in a similar manner:
printf "%s %-10s %-12s %-8s\n", $1, $3, $4, $6 > "mslist"

awk thus provides the flexibility of separately manipulating the different output streams. Bug don't
forget the quotes!

18.4 VARIABLES AND EXPRESSIONS

Throughout this chapter, we'll be using variables and expressions with awk. Expressions comprise
strings, numbers, variables and entities that are built by combining them with operators. (x + 5)*12
is an expression. Unlike in programming languages, awk doesn’t have char, int, 1ong, double and
so forth as primitive data types. Every expression can be interpreted cither as a string or a number,
and awk makes the necessary conversion according to context,

awk also allows the use of user-defined variables but without declaring them. Variables are case-
sensitive; x 1s different from X. A variable 1s deemed to be declared the first time it is used. Unlike
shell variables, awk variables don't use the § either in assignment or in evaluation:

x = "g"
print x

awk—An Advanced Filter 335'

A user-defined variable needs no initialization. It is implicitly initialized to zero or a null string. As
mentioned before, awk has a mechanism of identifying the type and initial value of a variable from
its context.

Strings in awk are always double-quoted and can contain any character. Like echo, awk strings can
include escape sequences and octal values, but strings can also include hex values. There's one
difference however; octal and hex values are preceded by only \ and \x, respectively:

x ="\t\tBELL\7"
print x Prints two tabs, the string BELL and sounds a beep

awk provides no operator for concatenating strings. Strings are concatenated by simply placing
them side-by-side:

x = "sun" ; y = "com"

print x vy Prints suncom

print x "." y Prints sun.com

Concatenation is not affected by the type of variable. A numeric and string value can be concatenated
just as easily. The following examples demonstrate how awk makes automatic conversions when
concatenating and adding variables:

X ="5" s y=6;z="A"

print x y y converted to string; prints 56
print x +y X converted to number; prints 11
print y + z z converted to numeric 0; prints 6

Even though we assigned "5" (a string) to x, we could use it for numeric computation. Also observe
that when a number is added to a string, awk converts the string to zero since it doesn’t have numerals.

Expressions also have true and false values associated with them. Any nonempty string is true; so
is any positive number. The statement

if (x)

is true if x is a nonnull string or positive number.

Note: Variables are neither declared nor their type specified. awk identifies their type and initializes them
to zero or null strings. String variables are always double-quoted, but can contain escape sequences.
Monprintable characters can be represented by their octal or hex values.

18.5 THE COMPARISON OPERATORS

How do you print the three fields for the directors and the chairman? Since the designation field is
$3, vou have to use it in the selection criteria:

$ awk -F"|" '$3 == "director” || $3 == "chairman" {
> printf "%-20s %-12s %d\n", $2,$3,$6 }' empn.lst
n.k. gupta chairman 5400

lalit chowdury director 8200

Advanced Shell Programming “ZI

« Devise useful shell functions required for everyday use.

« Use exec to access files with file descriptors in the same way system calls access them.

21.1 SHELLS AND SUB-SHELLS

When the shell executes a shell script, it first spawns a sub-shell, which in turn executes the
commands in the script. When script execution is complete, the child shell withers away and returns
control to the parent shell. You can also explicitly invoke a sub-shell to execute a shell script. The
command representing the shell itself (sh, ksh or bash) can be used to read the statements in join.sh:

sh join.sh Shell also accepts script name as argument
sh < join.sh Its standard input can also be redirected

Thus a shell script run with sh, ksh or bash need not have execute permission. This technique,
however, is applicable for executing only shell scripts and not executables. You certainly can’t use
sh < a.out.

Even though the shell accepts a script name as argument, we generally don’t run shell scripts in
the way shown above. We simply key in the script name from the shell prompt and run it as an
executable. In this case, the current shell uses a sub-shell of the same type to execute it. However,
if the script contains the interpreter line in this form:

#1/usr/bin/ksh

then, even though the login shell may be Bourne, it will use the Korn shell to execute the script.
Specification of the interpreter line also helps us identify the shell the script is meant to use. We
have specified the interpreter line in every script used in Chapter 14; we'll continue this practice in
this chapter also.

21.2 () AND {}: SUB-SHELL OR CURRENT SHELL?

The shell uses two types of operators to group commands. You must understand clearly the
consequences of using one group in preference to the other:

o The () Statements enclosed within parentheses are executed in a sub-shell.

e The {} Statements enclosed within curly braces are executed in the current shell only.

You have used the first type (8.5.2) to collectively redirect the standard output of two commands
with a single redirection symbol 1n a manner similar to this:

(a.sh ; b.sh : c.sh) = d.sh

Sub-shell considerations are not important here, so we can use either form, but some applications
require a set of commands to be run without spawning a child shell. To consider an example, let’s
use both grouping operators with the ed and pwd commands. Check your current directory and
then change it with cd:

$ pwd
/home /kumar

Fa_.e UNIX: Concepts and Applications

§ (cd progs ; pwd)
/home /kumar/progs

$ pwd -

/home /kumar Back to original directory
Working from a sub-shell, ed changed the working directory (one of the environmental parameters)
to /home/kumar/progs. The parent (login shell) can’t adopt this change, so the original directory is
back in place. The same command group—this time using the {} operators—tells a different
story:

$ pwd

/home/kumar

$ { cd progs ; pwd ; }

/home /kumar/progs

$ pwd

/home /kumar/progs Directory change 1s now permanent

The two commands have now been executed without spawning a shell; no separate environment
was created, and the change of directory became permanent even after the execution of the command
group. Note that we need to precede the closing brace with a ; if both { and } appear in the same line.

An often-used sequence used in many shell scripts checks the number of command line arguments
and terminates the script with exit if the test fails. For instance, a sequence like this:
if [$# -ne 3] ; then
echo "You have not keyed in 3 arguments"

exit 3
fi

can be easily replaced with this sequence using curly braces:

[$# -ne 3] && { echo "You have not keyed in 3 arguments" ; exit 3 ; }

Why can’t we use () instead of {} here? The exit statement can terminate a script only if it runs in
the same shell that's running the script. This is the case when exit runs inside the {}, but not
when it runs inside (). An exit inside () will stop executing the remaining statements in the
group, but that won’t automatically terminate a script.

21.3 export: EXPORTING SHELL VARIABLES

By default, the values stored in shell variables are local to the shell and are not passed on to a child
shell. But the shell can also export these variables (with the export statement) recursively to all
child processes so that, once defined, they are available globally. You have used this statement
before, but now you should understand why you have done so.

Consider a simple script which displays the value of a variable x, assigns a new value to it and then
displays the new value again:

$ cat var.sh

echo The value of x is $x

x=20 # Now change the value of x
echo The new value of x is $x

m UNIX: Concepts and Applications

Most users have the impression that you must log out and log in if you have made a change to the
.profile. You actually don’t need to do that; simply execute the edited file with the . command.
You'll need this facility later to execute files containing shell functions.

Note: The dot command executes a script without using a sub-shell. It also doesn't require the script to
have execute permission.

21.5 let: COMPUTATION—A SECOND LOOK (KORN AND BASH)

Korn and Bash come with a built-in integer handling facility that totally dispenses with the need to
use expr. You can compute with the let statement which is used here both with and without quotes:

$ let sum=256+128 No whitespace after variable
§ let sum="256 + 128" No whitespace after variable

If you use whitespace for imparting better readability, then quote the expression. In either case, sum
is assigned the result of the expression:

$ echo $sum
384

Let’s see how let handles variables. First define three variables; a single Tet does it:

$ let x=12 y=18 z=5

$ let z=x+y+$z $ not required by et
$ echo $z

35

let permits you to get rid of the § altogether when making an assignment. Since this computational
feature is built in, scripts run much faster than when used with expr. Later, we'll be using Tet in
place of expr in one of our scripts.

A Second Form of Computing with ((and)) The Korn shell and Bash use the ({)) operators
that replace the 1et statement itself:

$ x=22 y=28 z=5

$ z=$((x+y + z)) Whitespace is unimportant

$ echo $z

55

$ z=3((z+1))

$ echo $z

56

POSIX recommends the use of ((and)) rather than let, and this form is likely to become a
standard feature. It's easier to use too because a single dollar can replace multiple ones.

21.6 ARRAYS (KORN AND BASH)

Korn and Bash support one-dimensional arrays where the first element has the index 0. Here's
how you set and evaluate the value of the third element of the array prompt:

Advanced Shell Programming 451}

$ prompt[2]="Enter your name: "

$ echo ${prompt[2]}
Enter your name:

Note that evaluation is done with curly braces, and prompt[2] is treated just like a variable. I,
however, doesn’t conflict with a variable prompt that you may also define in the same shell. For
assigning a group of elements, use a space-delimited list having either of these two forms:

set -A month_arr 0 31 29 31 30 31 30 31 31 30 31 30 31 Korn only
month_arr=(0 31 29 31 30 31 30 31 31 30 31 30 31) Bash only

In either case, the array stores the number of days available in each of the 12 months. The first
element had to be deliberately assigned to zero for obvious reasons. Finding out the number of
days in June is simple:

$ echo ${month_arr[6]}
30

Using the @ or * as subscript, you can display all elements of the array as well as the number of
elements. The forms are similar except for the presence of the # in one:

$ echo ${month_arr[@]}

0 31 29 31 30 31 30 31 31 30 31 30 31

$ echo ${#month_arr[@]} Length of the array
13

Can we use arrays to validate an entered date? The next script, dateval.sh (Fig. 21.1), does just
that. It takes into account the leap year changes (except the one that takes place at the turn of every
fourth century).

The first option of the outer case construct checks for a null response. The second option uses the
expression $n/$n/$n to check for an eight-character string in the form dd /mm [yy. Using a changed
value of IFS, the components of the date are set to three positional parameters and checked for
valid months. The second case construct makes the leap year check and then uses an array to
validate the day. The continue statements take you to the beginning of the loop whenever the test
fails the validity check. Let’s test the script:

$ dateval.sh

Enter a date: [Enter/
No date entered

Enter a date: 28/13/00
I1Tegal month

Enter a date: 31/04/00
I11egal day

Enter a date: 29/02/01
2001 is not a leap year
Enter a date: 29/02/00
29/02/00 is a valid date
[Ctri-c]

Since the script has no exit path, we had to use the interrupt key to terminate execution.

Advanced Shell Programming 453'

This form should appear familiar to you as perl uses a similar form to evaluate the length of an
array (19.8).

21.7.2 Extracting a String by Pattern Matching

You can extract a substring using a special pattern matching feature. These functions make use of
two characters—# and %. Their selection seems to have been based on mnemonic considerations., #
is used to match at the beginning and % at the end, and both are used inside curly braces when
cva]uqting a variable.

To remove the extension from a filename, previously you had to use an external command—
basename (/4.12.2). This time, you can use a variable's ${variable%pattern} tormar to do that:

$ filename=quotation.txt

$ echo ${filename%txt}

quotation. txt stripped off
The % symbol after the variable name deletes the shortest string that matches the variable’s contents
at the end. Had there been two %s instead of one, the expression would have matched the longest
one. Let's now use %% with wild-cards to extract the hostname from an FQDN:

$ fgdn=java.sun.com

$ echo ${fqdn%%.*}

java
You’ll recall that basename can also extract the base filename from a pathname. This means deleting
the longest string that matches the pattern */, but at the beginning:

§ filename="/var/mail/henry"
$ echo ${filename##*/}
henry

This deletes the segment, /var/mail—the longest pattern that matches the pattern */ at the
beginning. The pattern matching forms of Korn and Bash are listed in Table 21.1.

Table 21.1 Pattern Matching Operators Used by Korn and Bash

Form Evaluates to segment remaining after deleting
${vartpar} Shortest segment that matches par at beginning of $var
$ (varfipar} Longest segment that matches pat at beginning of $var
${varipat} Shortest segment that matches pat at end of $var

$ {variipat} Longest segment that matches pat at end of $var

21.8 CONDITIONAL PARAMETER SUBSTITUTION

To continue on the subject of variable evaluation, you can evaluate a variable depending on whether
it has a null or defined value. This feature is known as parameter substitution, and is available
in the Bourne shell also. It takes this general form:

${<var>:<opt> <stg>}

lsoa UNIX: Concepts and Applications

#include <fcntl.h> /*
#include <unistd.h> /*
#include <errno.h> J*
#include <stdio.h> /*

int main(int argc, char **argv) |
int size, fd;
char buf;
char *mesg = "Not enough arguments\n";

if (argc != 2) { /* Our own

exit(1);
}

if ((fd = open(argv[1], O_RDONLY)) == -1)
if (errno == ENOENT) {

fprintf(stderr,
exit(2);
} else {
perror(argv(1]); /*
exit(3); /*
} /*
}
1seek(fd, 1, SEEK_END); /*

while (1seek(fd, -2, SEEK CUR) >= 0) { /*
if (read(fd, &buf, 1) !=1) { /*
perror("read"); :
exit(4);

perror("write");

/* Program: reverse read2.c -- Reads a file in reverse - uses error handling

write(STDERR_FILENO, mesg, strlen(mesg));

*/

For O_RDONLY */

For STDOUT FILENO */

For ENOENT, errno, etc. */
For ENOENT, errno, etc. */

/* Single-character buffer */

user-defined error message */
/* Crude form of error */
/* handling using write */
/* Use fprintf instead */

{

/ *Checking for specific error*/

"%s\n", strerror(errno)); /* perror is better */

Using two library functions */
perror and exit. Often the */
preferred way */

Pointer taken to EOF + 1 first */
and then back by two bytes */
A signal can create error here */

}
if (write(STDOUT FILENO, &buf, 1) != 1) { /* Disk may run out of space */

exit(5);
}
}
close(fd); /* Can have error here too */
exit(0); /* exit doesn't return - hence no error */

Fig. 23.6 reverse_read2.c

It's often the case that when you use perror, you also quit the program immediately thereafter.
Henceforth, we’ll be using the quit function to handle most error conditions. Enter this definition
for quit in a file, quit.c:

510 UNIX: Concepts and Applications

File Descriptor Table File Table Vnode Table
0 ‘ ptr I)) |
S R File Opening Mode Inode Information |
| " O_RDONLY, 0_WRONLY, |
1) P A 0_RDWR | v
S S -
| tr / - |
2 | P / 1 Reference Count
——— =} — / Status Flags
3 f ptr ! | O _CREAT, 0_EXCL,
- i . 0 _TRUNC, O_APPEND
4 ptr 0 _SYNC

T

|

I
=

|

Offset Pointer

+++++

Reference Count

Fig. 23.7 File Sharing—The Three Tables

the descriptor will be closed when the process does an exec (9.4) to run a separate program. By
default, a descriptor is not closed when the process does an exec.

23.7.2 The File Table

Every entry in the file descriptor table points to a file table. This table contains all data that are
relevant to an opened file. More specifically, it contains

¢ The mode of opening (like 0_RDONLY).
o The status flags (like 0_CREAT, 0_TRUNC, etc.).

« The offset pointer location that determines the byte position to be used by the next read or write
operation.

o A reference count that indicates the number of processes or calls that point to this table.

Every symbolic constant used as the second argument to open is made available in the file table.
Since the file descriptor table and file table appear to share a one-to-one relationship, you could ask
this: Why can’t the mode, flags and offset be kept in the file descriptor table rather than in the file
table? The answer is that UNIX also allows two or more file descriptors to point to the same file
table entry (many-to-one). This happens when you duplicate the file descriptor (with the dup and
dup2 system calls) and when you create a process (with fork). We'll consider the implications of this
replication in the next chapter.

E12 UNIX: Concepts and Applications

23.8 DIRECTORY NAVIGATION

There are two system calls that perform the action of the ed command. They are chdir and fechdir,
which use a pathname and a file descriptor, respectively as argument:

int chdir(const char *path);

int fchdir(int fildes);
We'll be using ehdir in our next example. The current directory is obtained by the getewd library

function. Some UNIX systems feature other functions (like getwd), but POSIX recommends the
use of getewd which must use this syntax only:

extern char *getcwd(char *buf, size t size);

Here, buf'is defined as a character array of size bytes. After invocation of getewd, the pathname of
the current directory i1s made available in &uf.

The next program, dir.c (Fig. 23.9), uses chdir to switch to a directory. It also invokes getewd to
obtain the pathname of the current directory, both before and after the switch. The buffers that store
the directory pathnames are provided with one extra slot for storing the null character.

The program makes use of the quit function that we just developed. We'll now have to link the
object code for quit.e with this program using

/* Program: dir.c -- Directory navigation with chdir and getcwd */

#include <stdio.h=
#define PATH_LENGTH 200

void quit(char *, int); /* Prototype definition */

int main(int argc, char **argv) {
char olddir[PATH_LENGTH + 1]; J* Extra character for null */
char newdir[PATH LENGTH + 1];

if (getcwd(olddir, PATH _LENGTH) == -1) /* Getting current directory */
quit("getcwd", 1);
printf("pwd: %s\n", olddir);

if ((chdir(argv[l]) == -1)) /* Changing to another directory */
quit("chdir", 2);
printf("cd: %s\n", argv[l]);

getcwd (newdir, PATH_LENGTH); /* Getting new directory */
printf("pwd: %s\n", newdir);
exit(0);

Fig. 23.9 dir.c

Systems Programming ll—Process Control 547 I

The exec operation can be performed by six members of a family of one system call and five library
functions, which we'll refer to simply as “exec” or the “exec family”. There’s no system call named
exec; rather, there’s only one—execve, on top of which five library functions are built.

The entire set can be grouped into two parts, which we'll call the “execl” set and the “execv” set,
because the function names begin with the string exec followed by either an 1 or a v. Two of the
members also have the names execl and execv; the other four are simple derivatives of them and
have more similarities than differences.

Tip: First, commit to memory this simple statement: The 1 in exec] (and its variants) represents a fixed
list of arguments, while the v in execv (and its variants) signifies a variable number of arguments.

24.8.1 execl: The Key Member of the “|” Series

As noted 1n the Tip above, execl is used with a list comprising the command name and its arguments:

int execl(const char *path, const char *argl, ... [*, (char *) 0 */);

The syntax may appear daunting, but it is not; in fact, it is quite simple. We use execl when we
know the number of arguments in advance. The first argument is the pathname (pazh) which could
be an absolute or a relative pathname. The arguments to the command to run are represented as
separate arguments beginning with the name of the command (*arg0). The ellipsis representation
in the syntax (... /*) points to the varying number of arguments.

To consider an example, here’s how we use execl to run the we -1 command with the filename foo
as argument:

exec) {lrj{h.i ﬂf\'lC“, "wc", "-1", "foo", l:l:hﬂr' *] D};
execl doesn’t use PATH to locate we, so we must specify the pathname as its first argument. The

remaining arguments are specified exactly in the way they will appear as main’s arguments in we. So,
argv[0] in wc's main is we, the name of the command itself.

To understand why we follow the argument list with a null pointer ({char *) 0), let's first understand
how arguments are passed to a C program. By convention, we use this syntax for main when a program
is run with arguments:

int main(int argc, char *argv[]) {

The startup routine that eventually runs main populates *argv[] (an array of pointers to char) with the
string arguments specified in the command line. A null pointer is also placed at the end of the array.
The number of arguments (excluding the null pointer) is then evaluated and assigned to argc. When
main runs, it knows the number of arguments passed to it.

When we use exec to run a program, there's no provision to specify the number of arguments (no
argc); exec has to fill up argc “by hand.” The only way for exec1 to know the size of the argument list
is to keep counting until it encounters the null pointer. That's why this pointer must be specified in every
member of the exec] series.

ﬁ UNIX: Concepts and Applications

Let’s use execl in our next program, execl.c (Fig. 24.7), to run the we -1 -c command with
/etc/passwd as argument. Because a successful execl never returns, the printf statement is not
executed:

$ a.out
166 9953 /etc/passwd

We can also use NULL in place of (char *) 0. Note that to be able to use execl, we must know the
number of arguments in advance because each argument is specified as a separate argument to
execl, Often, the size of the argument list is known only at runtime. The solution is execv, which
we’ll take up next.

24.8.2 execv: The Key Member of the “v” Series

To run a command with any number of arguments, you must use one of the functions of the “execv”
set. In this section, we discuss the execy function before we discover the advantages that are found
in its variants. execv needs an array to work with:

int execv(const char *path, char *const arge[]);

Like in execl, path represents the pathname of the command to run. The second argument represents
an array of pointers to char (of the same type asmain’s argv[]). The array is populated by addresses
that point to strings representing the command name and its arguments, in the form they are passed
to the main function of the program to be exec’d. In this case also, the last element of arge[] must be
a null pointer.

We'll use execv in the next program, execv. c (Fig. 24.8), to run the grep command with two options
to look up the author’s name in /etc/passwd. In this program, we populate the array *cmdargs[]
with the strings comprising the command line to be executed by execv. Note that the first argument
to execy still remains the pathname of the command. Here’s the run:

§ a.out
15:sumit:x:102:10:: /usersl/home/staff/sumit: /usr/bin/bash

You might say that this sequence could have been run by execl also, but observe the way we used
execv in the program. Since we pass the address of an array element as its second argument (cmdargs
being the same as &cmdargs[0]), it implies that we can input any command line during runtime.
Our next program will be used in that way.

/* Program: execl.c -- Uses execl to run wc */

#include <stdio.h>

int main(void) {
execl (" /bin/wc", "wc", "-1", "-c", "/etc/passwd", (char *) 0);
printf("execl error\n");

Fig. 24.7 execl.c

'5; UNIX: Concepts and Applications

This command line is accessed by execv as the address of argv[2]. The program doesn’t terminate
immediately after exec in the way the previous two programs did:

$ a.out /bin/grep grep -i -n SUMIT /etc/passwd
15:sumit:x:102:10:: /usersl/home/staff/sumit:/usr/bin/bash
Exit status: 0

The shell does a similar thing with our input except that we don’t provide input to the shell in the
way we did above. Even if we ignore this program’s inability to handle redirection and wild-card
interpretation, it still has the following drawbacks:

« We need to know the location of the command file because neither exeel nor execv will use
PATH to locate it.

» The command name is specified twice—as the first two arguments.
o These calls can’t be used to run a shell script but only binary executables.

o The program has to be invoked every time we need to run a command.

To be able to run programs in a simpler and easier way, we need to discuss the derivatives of execl
and execv. There are four of them, and after we examine them in the next section, we ‘Il use one of
them to design a rudimentary shell program that has none of the limitations presented above.

24.8.4 The Other Members of the “I” and “v” Series

execlp and execvp The requirement to provide the pathname of the command makes the
previous exec calls somewhat inconvenient to use. Fortunately, help is at hand in the form of the
execlp and execvp functions that use PATH to locate the command. They behave exactly like their
other counterparts but overcome two of the four limitations discussed in the previous section. First,
the first argument need not be a pathname; it can be a command name. Second, these functions can
also run a shell (or awk or perl) script. Here's their syntax:

int execlp(const char *file, const char *argll, ... /*, (char *)0 */);
int execvp(const char *file, char *const arge(]);

Note that pathname has now become file; the other arguments remain the same. To show how
execlp works, just replace the line containing the execl call in the program execl.c (Fig. 24.7),
with this one:

execlp("wc", "wc", "-1", "foo", (char *) 0);

Now the first and second arguments are the same. To run the program, execv.c (Fig. 24.8), that
uses execv, just change execv to execvp without disturbing the arguments. When running it, the
first two command line arguments can again be the same. You'll find these calls easier to work with.

Note: To run shell, awk or perl scripts with exec, use execlp or execvp. By default, exec spawns a
Bourne shell to read the commands in the script, but you can override that by providing an interpreter
line at the top of the script. For instance, if you have #! /bin/ksh as the interpreter line, exec will call up
the Korn shell.

ﬁ UNIX: Concepts and Applications

/* Program: shell.c -- Accepts user input as a command to be executed. Uses
the strtok library function for parsing command line */

f#include <stdio.h>

#include <unistd.h>

#include <string.h> /* For strtok */

finclude <wait.h>

#define BUFSIZE 200 /* Maximum size of command line */
#define ARGVSIZE 40 /* Maximum number of arguments */
#define DELIM "\n\t\r " /* White-space delimiters for strtok */
int main(int argc, char **argv) {

int i, n ;

char buf[BUFSIZE+1]; /* Stores the entered command line */

char *clargs[ARGVSIZE]; /* Stores the argument strings */

int returnval : /* Used by wait */

for (;;) { /* Loop forever */

n=1;

writeESTDUUT‘FILEHD, "Shell> ", 7); /* Display a prompt */
read(STDIN_FILENO, buf, BUFSIZE); /* Read user input into buf */
if (!strcmp(buf, "exit\n"))

exit(0); J/* Terminate if user enters exit */
/* Now parse buf to extract the */
clargs[0] = strtok(buf, DELIM); /* first word */

/* Continue parsing until ... */
while ((clargs[n] = strtok(NULL, DELIM)) != NULL)

n+; /* ... all words are extracted */
clargs[n] = NULL; /* Set last argument pointer to NULL */
switch(fork()) {
case 0: /* Run command in child */
if ((execvp(clargs[0], &clargs[0])) < 0)
exit(200); /* We'll. check this value later */
default: /* In the parent */
wait(&returnval); /* After the command has completed ... */

printf("Exit status of command: %d\n", WEXITSTATUS(returnval));
for (i = 0; i <=n; i++) /* ... initialize both ... */
clargs[i] = "\0"; /* the argument array ... */
for (i = 0; i <BUFSIZE+1; i++)
buf[i] = '\0'; /* and buffer that stores command */
} /* line, so next command can work with */
} /* an initialized buffer and argument */
} /* array. */

Fig. 24.10 shell.c

Systems Programming ll—Process Control 553 I

/* Program: dup.c -- Uses dup to achieve both input and output redirection
Closes standard streams first before using dup */

finclude =<unistd.h=

#include <stdio.h>

#include <sys/stat.h>

finclude =<fcntl.h=>

#define MODE6OO (S_IRUSR | S_IWUSR)

int main(int argc, char **argv) {
int fdl, fdZ;

fdl = open(argv[1], O RDONLY);

fd2 = open(argv[2], O WRONLY | O CREAT | O TRUNC, MODE60D);
close(STDIN_FILENO);

dup(fdl); /* This should return descriptor 0 */
close(STDOUT FILENO);

dup(fd2); /* This should return descriptor 1 */

execvp(argv[3], &argv[3]); /* Execute any filter */
printf("Failed to exec filter");

Fig. 24.11 dup.c

create a file in this time interval. In that case, that file will be allocated the descriptor that we wanted
from dup. The program will then fail.

To overcome this problem, we use the dup2 system call that uses two arguments:
int dup2(int fildes, int fildes2);

dup2 replicates filedes to filedes2 and returns it It filedes2 1s already open, dup2 closes it first. dup2
thus combines the actions of close and dup that were used in succession in the previous program,
except that dup2 performs both functions as a single atomic operation (23.1.5); a signal can’t interrupt
an atomic operation,

There are two problems with the previous program. First, doing an exec in a single process leaves us
with nothing more to do since exec doesn't return. Further, by closing standard output, we ensured
that we can’t write to the terminal again. Ideally, files to be used for redirection should be opened in
a separate child process. The child should manipulate the descriptors before exec’ing the program
which uses these descriptors.

To tall in line with the shell’s approach to redirection, let’s repeat the previous exeraise, using dup2
this time. In this program, dup2.c (Fig. 24.12), file opening, descriptor manipulation and also the
exec are done in a child process. The parent simply forks and waits for the child to die. The program
uses the quit function developed in the previous chapter to handle error messages.

To demonstrate how the parent correctly obtains the exit status of the command run by the child
let’s use the program to run grep twice:

I;ss UNIX: Concepts and Applications

/* Program: dup2.c -- Opens files in the parent and uses
dup2 in the child to reassign the descriptors */
#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <wait.h>

#define OPENFLAGS (O_WRONLY | O_CREAT | O_TRUNC)
#define MODE60O (S_IRUSR | S_IWUSR)

void quit(char *message, int exit status) ;

int main(int argc, char **argv) {
int fdl, fd2, rv, exit status;

if (fork() == 0) { /* Child */
if ((fdl = open(argv[1], O _RDONLY)) == -1)
quit("Error in opening file for reading\n", 1);
if ((fd2 = open(argv[2], OPENFLAGS, MODE60D)) == -1)
quit("Error in opening file for writing\n", 1);
dup2(fd1,0); /* Closes standard input simultaneously */
dup2(fdz,1); /* Closes standard output simultaneously */
execvp(argv([3], &argv[3]); /* Execute command */
gquit("exec error", 2);

} else { /* Parent */
wait(&rv); /* Or use waitpid(-1, &rv, 0) */
printf("Exit status: %d\n", WEXITSTATUS(rv));

}

}

Fig. 24.12 dup2.c

$ a.out /etc/passwd passwd.cnt grep joker

Exit status: 1 joker not found in fetc/passwd
§ a.out /etc/passwd passwd.cnt grep sumit
Exit status: 0 sumit found in fetc/passwd

§ cat passwd.cnt
sumit:x:500:500:sumitabha das:/home/sumit:/bin/bash

grep here is used only with the pattern as argument; it obtained its input from standard input,
which was redirected using dup2 to originate from /etc/passwd. Further, the standard output of
grep was also redirected with dup2 to passwd.cnt.

24.10.3 fentl: Recommended over dup and dup2

POSIX calls dup and dup2 “redundant” functions, and advocates the use of the fentl system call.
Space constraints don’t permit a thorough examination of this versatile system call, but you should

ISSB UNIX: Concepts and Applications

Although a pipe is most commonly shared by two processes, a trivial example shows its use in a
single process:

int n, fd[2];

char buf[100];

pipe(fd); Fills up £d[2] with 2 descriptors
write(fd[1], "abcdefgh", 8); Writing to one file descriptor

n = read(fd[0], buf, 100); and reading it back from another
write(STDOUT _FILENO, buf, n); Printing what was read from pipe

The pipe call here generates two file descriptors, fd[0] and fd[1]. We simply write the string abcdefgh
to fd[1], read it back from fd[0], and then write the same string to standard output. There's not
much to learn from here except that numerous possibilities open up when a pipe 1s used by two
processes. This is taken up next.

24.11.1 Using pipe with fork

To make pipe work in tandem with fork, the usual procedure is to create the pipe before forking a
process. Because fork duplicates all open descriptors, a call to pipe before a fork connects two
descriptors to each end of the pipe. To use the pipe, we don’t need all four of them, but only one at
each end. Data here can flow in either direction, but assuming that the parent writes to the pipe and
the child reads 1t, we must close the pipe’s read end in the parent and write end in the child. This s
what the program, pipe.c (Fig. 24.13), does.
The pipe call returns two descriptors, fd[0] and fd[1], which should have the values 3 and 4 in this
program. This example assumes data flowing from parent to child, so the parent doesn’t need the
read end (fd[0]), while the child doesn’t need the write end (fd[1]), the reason why these descriptors
have been closed. The program outputs the string that's written to the pipe:

$ a.out

Writing to pipe
This 1s the string write wrote to fd[1] and read gathered from fd[0]. In real-life though, you use
separate programs on either side of the shell’s pipe symbol, |. So you'll naturally expect to be able to
do a similar thing with pipe. This means that you have to connect the standard output of one
program to fd[1] and standard input of the other to fd[0]. How does one do that? '

24.11.2 pipe2.c: Running UNIX Commands in a Pipe

The next program, pipe2.c (Fig. 24.14), addresses this issue. Apart from closing the unneeded file
descriptors associated with the pipe, the program also uses dup2 to replicate the other descriptors—
both in the parent and the child. We reverse the data flow here—from the child to the parent—just
to prove that the direction of flow is irrelevant.

To understand how the program works, let’s first examine the sequence of statements that are execured
in the child process. We first close (fd[0]). the descriptor for the read end of the pipe. We don’t need
it since the child writes (not reads) to the pipe. Next, we replicate fd[1] with dup2 to give us the
descriptor used by standard output. At this stage, the file descriptor for standard output points to the
write end of the pipe. This means we don’t need the original descriptor (fd[1]) that was connected
to the same end of the pipe; so we close it.

Advanced System Administration 587 I

o respawn—Makes sure a process restarts on termination. This 1s always required for the getty
process,

o boot—FExecutes only when inittab is read the first time. init ignores any run-level fields
placed here.

¢ off-—Kills the process if it 1s running.

« ctrialtdel—Executes the shutdown command (Linux only).

Using telinit g As administrator, you can also insert or modify statements in /etc/inittab.
You can change the default run level, or add and modify entries when adding a new terminal or
modem to the system. But then vou have to use the telinit command to let init reread its
configuration file:

telinit g A directive to init

init and telinit are symbolically linked, and in most cases, they can be used interchangeably.
However, telinit uses the -t option to indicate to init the number of seconds that init has to wait
before it starts killing processes—something that happens during system shutdown.

25.8.3 init and getty

Jetc/inittab will always have at least one line that specities running a program to produce a login
prompt on the console and other terminals (if supported). We deliberately didn’tinclude this line in
the sample lines shown previously because Solaris uses a nonstandard program for handling this
function. Rather, these lines from a Linux machine illustrate the relationship between init and the
mingetty (the “getty” of Linux) program:

1:2345:respawn: /sbin/mingetty ttyl
2:2345:respawn: /sbin/mingetty tty2

Either line provides this directive: “For run levels 2, 3,4 or 5, run the mingetty program (with ttyl
or tty2 as argument) and recreate (respawn) the process when it dies, i.e., when the user logs our.”
It's because of lines like these that you see the Togin: prompt on your terminal. Recall from Section
9.4.1 that the getty process execs 1ogin, which in turn execs a shell.

LINUX: Because of /etc/inittab, you can have multiple virfual consoles on your Linux machine. (se
fGirli{Alt]-and a function key to bring up a new screen. In this way, you can have multiple login sessions
orrasingle machine,

25.8.4 The rc Scripts

init and /etc/inittabcompletely control the way the system is boored and powered down. Morcover,
when the system changes a run level, init looks up inittab to identfy the processes that should
and shouldn’t be running for the new run level. It first kills the processes that shouldn’t be running
and then spawns those that should be.

Every inittab specifies the execution of some re (run command) scripts placed in fetc or /shin.

These scripts have the names re0, rel, re2—one for cach run level. This is evident from the following
lines in /etc/inittab that were also shown at the beginning of Section 25.8.2:

ﬁ UNIX: Concepts and Applications

s0:0:wait:/sbin/rc0 >/dev/msglog 2<>/dev/msglog </dev/console
s2:23:wait:/sbin/rc2 >/dev/msglog 2<>/dev/msglog </dev/console
s3:3:wait:/sbin/rc3 >/dev/msglog 2<>/dev/msglog </dev/console

init executes the script specific to that run level. However, re2 runs in both states 2 and 3. Each re
script further specifies the execution of a series of scripts in the directory /etc/rcn.d. This means
that for run level 2, init executes /etc/rc2, which in turn executes the scripts in /etc/re2.d.

Now, let’s turn our attention to the scripts in the /etc/ren.d directories. These directories hold two
types of files as shown by this listing of /etc/rc2.d:

KO7dmi S69inet S74xntpd S90wbem

K07 snmpdx S70uucp S$75cron $92voimgt
Klbapache S711dap.client S75savecore S93cacheos. finish
K28nfs.server $71rpc S76nscd S94ncalogd
SOIMOUNTFSYS S72autoinstall 5801p 5$95ncad
S20sysetup S72s1pd S85power 599dtlogin
S2lperf S73cachefs.daemon SB8sendmail

The scripts here fully initialize the system by mounting file systems, setting up the network and
activating the other daemons. They are executed in two batches. When the system enters run level 2,
rc2 executes (in ASCII sequence) all scripts beginning with K (the “kill” seripts) with the stop
argument. This kills all processes that shouldn’t be running at this level. It then executes the scripts
beginning with S (the “start™ scripts) with the start argument. If you look up the re2 script, you'll
find two for loops doing that.

As system administrator, you must understand how these scripts work. You should also be able to
identify the script that starts a specific service. The filenames generally provides the clue, but
sometimes you may need to use grep to look for names of specific daemons (like httpd, sendmail,
1psched, inetd, etc.) in these files.

Mote: A script in rcn. d beginning with S is meant to start a service, while one beginning with K is meant
to kill one. The kill scripts are executed before the start ones. They are all run from the
corresponding /etc/ren (or /etc/rc.d/rec with the argument n in Linux) script where n signifies the
run level.

LINUX: The rc Files

The initialization files in Linux were originally based on BSD, but now have a strong Systern V flavor.
However, the rc files and directories here are all under one roof—/etc/rc.d. Moreover, instead of
using ren, Linux uses a single file, re, with different arguments as shown below in these lines from
Jetc/inittab:

10:0:wait: /etc/rc.d/rc 0

11:1:wait: fetc/rc.d/rc 1

12:2:wait:/etc/rc.d/rc 2

All scripts in the rcn. d directories are executed from /etc/rc.d/re. The sequence for Linux goes like
this: For switching to run level n, init executes /etc/rc.d/rc n, which executes the scripts in
fete/re.d/ren.d.

' UNIX: Concepts and Applications

25.1 How will you ensure that the password is changed ofter every four weeks?

25.2 A user after logging in is unable to change directories or create files in her home directory.
How can that happen?

25.3 Discuss the significance of the boot, root and swap file systems.

25.4 Which file system can't be unmounted and why?

25.5 creates, modifies and deletes partitions. creates a file system. makes
a consistency check of one or more file systems.

25.6 When can mount work with only one argument? When is unmounting of a file system not
possible?

25.7 Where is the file system mounting information kept in (i) SVR4, (i) Linux?
25.8 What is run level? How do you determine and set the default run level of your system?
25.9 What should you do immediately after you have made changes to /etc/inittab?

Copyrighted material

Appendix A—The C Shell 595'

Computation

Unlike the Bourne shell, integer computing is built into the C shell. The arithmetic operators are
standard (+, -, *, / and %). While variable assignment can be made with set or setenv, this shell
offers a special operator, @, for performing computation:

% set x=5H

@y=10 A space after @

% @ sum=$x + 3y

% @ product = $x * $y

% @ quotient = $y/$x Space around [required
@: Badly formed number

% @ quotient = $y / $x

Incrementing numbers is done in these ways:

Bx=%x+1
@ x++

The @ must be followed by whitespace even if the = need not have any around it. The arithmetic
operators must also be surrounded by whitespace.

Arrays and Lists

As discussed in Chapter 10, the C shell uses the set statement to define a local variable and setenv
to define an environment variable. By default, set displays all local variables, but note that one
variable (path) is set and evaluated differently:

% set path = (/bin /usr/bin /usr/local/bin /usr/dt/bin .)
% echo $path
/bin fusr/bin fusr/local/bin [fusr/dt/bin .

Like argv, path is an array or list of five elements. The first element i1s accessed by $path[1], the
second by $path[2], and so on. The number of elements in the list is indicated by $#path:

% echo $path

/bin fusr/bin fusr/local/bin [fusr/dt/bin .
% echo $path[3]

Jusr/local/bin

% echo $#path

5

Values can be put into an array with the set statement and shift also works with arrays:

% set numb = (9876 2345 6213) Like set 9876 2345 6213
% echo $numb[1]

9876

% echo $#numb Entire list stored in $numb[*]
3

% shift numb Uses array name too

% echo $numb[1]

2345

ISQE UNIX: Concepts and Applications

END
set choice = $§<
switch ($choice)
case 1: # Note the :
1s =1 ; breaksw
case 2:
ps -f ; breaksw
case 3:
exit
default: # Use when previous matches fail
echo "Invalid option"
endsw

The breaksw keyword moves control out of the construct after a successful match is found. If this
word is not provided, then control “falls through™ the end of the construct and performs all actions
associated with al/ case options. The default keyword is used as the last option.

The while and foreach Loops

There are two loops—while and foreach (instead of for). Both loops have three major differences
with their counterparts in the other shells:

¢ The loop condition (or the list) is to be enclosed within parentheses.
+ The do keyword 1s not used.
¢ The loop is terminated with end instead of done.

Let’s consider the while loop first. This simple sequence entered at the prompt runs the ps command
four times:

5setx=1

% while ($x < §5) Can also use while { true }
7 ps -f PS2 for C shell is ?

7 sleep 5

7 @ x++

7 end

The foreach loop also has differences with its Bourne rival, but has been emulated by perl. The
keyword foreach replaces for, and the in keyword is not required. The example in Section 14.12
can be reframed like this:

% foreach file (chap20 chap2l chap2Z chap23)
? cp $file ${file}.bak

? echo $file copied to $file.bak

7 end

Here, each component of the four-item list is assigned to the variable file until the list is exhausted.
There are other ways of using a list:

foreach item (“cat clist™)
foreach fpame (*.c) All € programs in current directory
foreach fname ($*) Seript arguments

Appendix A

The C Shell—Programming
Constructs

The C shell was developed at UCB by Bill Joy, the architect of vi. This shell is used today mainly for
its interpretive features. These features have also influenced the design of the Korn and Bash shells.
The latter shells have completely superseded the C shell in power and versatility because they have
more powerful programming constructs. If you are looking for an improved C shell, then use the
Tesh shell that is available in Linux.

Specifying the Interpreter

There are two ways of running a C shell script. Either use the csh command with the script name:

csh seript_name

or invoke it by name but only after after providing the interpreter line at the top of the script:
#1/bin/csh

[f the latter technique is used but the script doesn’t have the interpreter line, the Bourne shell is
used. (Linux uses Bash in this situation.) Every C shell script also executes the rc file, ~/.cshre.

Interactive and Noninteractive Scripts

To make a script pause to read the standard input, you need to assign the special parameter, $<,toa
variable. Input, which can comprise multiple words, is treated as a quoted string:

#1/binfcsh

echo "Enter filename: \c"

set flname = $<
echo "File: $flname"

A script can also be run noninteractively by passing command line arguments that are saved in a list
or array named $argv. The arguments are individually accessed with $argv[1], $argv[2] etc. Further,
$#argv is set to the number of arguments. To maintain compatibility with the other shells, the C
shell also allows the use of $1 and $2, and so forth. Tesh also allows the use of §$#.

Appendix E—Glossary Eil

metacharacter Term used to describe any character that means something special to the shell.
The meaning is reversed by preceding the character with a \. Concept also extends to special
characters used by certain commands as part of their syntax.

minor number One of the parameters of the listing of a device file which indicates the special
characteristics of the device. Can be interpreted to mean the parameters passed on to the device
driver. See also major number.

modification time One of the time stamps of a file stored in the inode which represents the date
and time the contents of a file were last modified. One of the attributes displayed by the listing.

mounting The process of attaching a standalone file system to another file system. Also features
a command by the name mount. See also unmounting.

MULTICS An operating system whose development work was aborted to give way to the UNIX
operating system. Many of the features of UNIX owe their origin to MULTICS.

Multipurpose Internet Mail Extensions (MIME) A standard used on the Internet to encode and
decode binary files. Also useful in encoding multiple data formats in a single mail message. Features
two headers—Content-Type and Content-Transfer-Encoding.

name server A dedicated service used on the Internet to convert the fully qualified domain
name of a host to its [P address and vice versa. A name server is queried by a resolver and may
either provide the answer or the address of another name server.

newline The character generated by hitting [Enter]. Used as the delimiter between two lines and
forms one of the characters of whitespace.

newsgroup An offline discussion group on the Internet which originated from the UNIX-based
USENET. Netscape Messenger also handles newsgroups.

nonprivileged user An ordinary user having no superuser privileges.

option A string normally beginning with a -, which changes the default behavior of a command.
Multiple options can generally be combined with a single - symbol.

ordinary file The most common file of the UNIX system represented by programs, data and text.
It contains data but not the end-ot-file mark. Also known as regular file.

orphan A process whose parent has died. Orphans are adopted by init.

others A category of user understood by the chmod command. A user who 1s neither the owner nor
a group owner of a file belongs to this class. One set of file permissions is associated with this
category. See also owner and group.

overlay Same as exec.

owner The creator ofa file having complete authority of determining its contents and permissions.
Understood as user by the chmod command. The string and numeric representations are stored in /
etc/passwd. See also group and others.

IME UNIX: Concepts and Applications

packet Term applied to describe a fragmented unit of data in a TCP/IP network.

pager A tool that displays output one screen at a time. more and less are the standard pagers on
UNIX and Linux systems.

Parent Process-ID (PPID) The process-id of the parent process which is stored in the process
table for every process.

passphrase A secret string used to protect a user's private key. Unlike a password, a passphrase
can contain spaces.

password A secret string used by a user for authentication during login. The code is not flashed
on the terminal, but is stored in an encrypted manner in /etc/shadow. Also features a command
with a similar name (passwd) to change the password.

PATH A shell variable that contains a colon-delimited list of directories that the shell will look
through to locate a command invoked by a user. The PATH generally includes /bin and /usr/bin for
nonprivileged users and /sbin and /usr/sbin for the superuser.

pathname A sequence of one or more filenames using a / as a delimiter. All except the last
filename have to be directories. See also relative pathname and absolute pathname.

pending signals mask A field maintained in the process table that shows the signals that have
been received for a process. The kernel looks up this field and the signal disposition table to
determine the action to be taken.

ping The sending of packets to a remote host to check the connectivity of the network. Also
features a command by that name.

pipe A buffered object that allows one-way data transmission through its two ends using flow
control. Whatever is written to one end is read from the other. Features a system call by that name.
Used to create a pipeline.

pipeline A sequence of two or more commands used with the | symbol so that the input of one
command comes from the output of the other. See also pipe.

plugin A small program that is installed in a browser to handle special file formats which can’t be
handled by the browser. Unlike a helper application, a plugin can’t be invoked separately.

port number A number used to identify a TCP/IP application and defined in /etc/services.
Servers use fixed port numbers but clients use random port numbers. A packet has two port numbers,
one for each end of the channel.

positional parameters The external arguments to a shell script which are read into a series of
special variables designated as §1, $2, $3, etc. These parameters can be renumbered with the shift
command,

POSIX A set of standard interfaces that are based on the UNIX operating system. POSIX compliance
ensures that a set of programs developed on one machine can be moved to another without recoding.
POSIX.1 represents the standard for the application programming interface for the C language.
POSIX.2 provides the interface for the shell and utilities.

Appendix E—Glossary “ﬂ

router A special device that routes packets from one network to another.

run level Term used to refer to the various states that a UNIX system can be in. The run level is
determined by the argument of the init command, and the action to be taken is specified in
/etc/inittab. Different re scripts are executed depending on the value of this run level,

secure shell (SSH) A suite of networking tools that enable remote login, file transfer and command
execution, Unlike with the older tools like telnet and ftp, communication with the secure shell is
totally encrypted.

server See client-server architecture.

Set-User-ID (SUID) A special mode of a file indicated by the letter s in the permissions field. The
effective user-id of a process having this bit set is the owner of the file and not the user running the
program. This property lets users modify important system files by using a specific command, rather
than directly.

shared library A group of object files that are loaded into memory only during runtime. Several
programs can share the same library code. See also static library.

shell The command interpreter of the UNIX system which runs perpetually at every occupied
terminal. The shell processes a user request and interacts with the kernel o execute the command.
It also possesses a programming capability.

shell function A group of statements executed as a bunch in the current shell. A shell function
accepts parameters and can return only a numeric value.

shell script An ordinary file containing a set of commands, which is executed in an interpretive
manner in a sub-shell. All the shell’s internal commands and external UNIX commands can be
specified in a script.

signal The notification made by the kernel that an event has occurred. A signal has a default
disposition (action to take)} but it can be overridden by a user-defined signal handler. Signals
SIGKILL and SIGSTOP can't be ignored or handled otherwise. See also signal disposition and signal
handler.

signal disposition The action to be taken when a signal occurs. Every signal has a default
disposition, maintained in the signal disposition table, which could be to terminate, stop the process

or to ignore the signal. The disposition can be changed by using a signal handler except for the
SIGKILL and SIGSTOP signals.

signal handler A user-defined function in a C program that catches a signal and makes it behave
in a manner that is different from the default. Signals SIGKILL and SIGSTOP can’t be caught.

signature file A file named .signature in a user’s home directory. It is used to enter a person’s
details that must accompany every mail message. Most mail user agents are configured to
automatically attach the file with every outgoing message.

Im UNIX: Concepts and Applications

umask A numbermaintained in the shell that determines a file’s default permissions. This number
is subtracted from the system’s default to obtain a file’s actual permissions. The value can be displayed
and set by using a command of the same name.

Uniform Resource Locator (URL) A string of characters that specifies a resource on the Web.
Comprises the protocol, the FQDN of the site and the path name of the file.

unmounting The process of disengaging a file system from the main file system. The umount
command performs this unmounting. See also mounting.

user The owner of a file as understood by the ehmod command. See also group and others.

user mode A mode of the CPU when running a program. In this mode, the program has no
access to the memory locations used by the kernel. See also kernel mode.

User-ID (UID) The name used by a user to gain access to the system. A list of authorized names is
maintained in /etc/passwd along with their numeric representations. Also known as login name
and username. See also group-id.

username Same as user-id.

virtual console A system of using multiple screens and logins from a single UNIX machine. A
new screen is opened by using [A{:] and a function key.

vnode table The image of the inode in memory. Contains apart from the inode information, a
reference count that shows the number of processes that point to the table. A file can’t be properly
deleted as long as this table is open.

wait Term used to refer to the inaction of a parent process while a child is running. Normally, the
parent waits for the death of the child to pick up its exit status. Also features a shell built-in command
and a system call by that name.

wake Term used to indicate the termination of a dormant activity when an event occurs. The
kernel wakes up a sleeping process when a specific event has occurred (like the completion of I/O).

Web page An HTML document containing text and graphics that is presented in the form of a
page at every Web site. A Web page has links with other pages—often on different machines.

Web server A TCP/IP application that runs the HTTP protocol. The World Wide Web serves all

resources through Web servers.

whitespace A contiguous sequence of spaces, tabs or newlines. The default value of the IFS
variable. Used as delimiter by the shell to parse command line arguments and by the set statement
to assign its arguments to positional parameters.

wild-card A special character used by the shell to match a group of filenames with a single
expression. The * and ? are commonly used wild-card characters. See also regular expression.

word A contiguous string of characters not containing whitespace. we can count words, and vi
enables cursor movement using a word as a navigational unit.

| Appendix E—Glossary E‘il

World Wide Web A service on the Internet featuring a collection of linked documents and
images. The browser (client) fetches these resources from a Web server using the HTTP protocol.

wraparound A feature provided by the vi editor for resuming the search for a pattern from the
other end of a file. The entire file 1s thus searched irrespective of the cursor position at the time of
commencement of search.

Xclient An X program which performs a specific function and uses the X server for display. xterm
is a common X client found in every X Window system.

X server The program in X Window which controls the display including the monitor, mouse

and keyboard. X clients write their output to this program. If the display changes, only the server
needs to change and not the clients.

X Window System The graphical component of the UNIX system. X clients write their output to
the server which is responsible for their display on separate windows.

zipped file Any file that is compressed with the gzip, zip or bzipZ commands. They are
decompressed with gunzip, unzip and bunzip2.

zombie A dead process whose exit status has not been picked up by its parent using wait. Zombies
clog the process table and can’t be killed.

. 75,77, 84

. command 206, 207
.bash_history 200
.bash_login 205

.bash profile 205
.bashrc 205, 207

.exrc 122,124, 443
.forward 372

Jkshrc 205, 207

.netrc 360

.profile 203-206, 449
.rhosts 363

.sh_history 200

.shosts 363

.signature 371-372

vimree 122, 443
Xdefaults 348

Xinitre 335, 338, 347-348
J/bin 29, 74, 79, 308

Jdev 79, 317

Jdev/dsk 317, 318
Jdev/null 160-161, 182
Jdev/rdsk 317,318
Jdev/tty 154, 161, 164, 279, 289-290, 455
Jetc 79
Jetc/cron.d/at.allow 308
fetc/cron.d/at.deny 308
fetc/cron.d/cron.aliow 308
Jetc/cron.d/cron.deny 308
fetc/default/man 37
Jetc/fstab 582
Jetc/group 109, 232, 311-312

Index

Jetc/hosts 342, 354-355, 370

Jetc/hosts.equiv 363

Jetc/inittab 338, 586-587

fetc/mailcap 373

Jetc/mime.types 373, 377

fetc/passwd 69,109,117, 147, 196, 197, 232, 311
structure 312-313

Jetc/profile 308

Jetc/resolv.conf 369-370

Jetc/shadow 309, 312, 313, 573

/home 80

J1ib 79,478

[lost+found 5K4

/sbin 79,308

Jtmp 79,310

Jusr/bin 29, 74,79, 308

Jusr/inciude 79

Jusr/include/sys/signal.h 185

Jusr/1ib 79,478

Jusr/sbin 19

Jusr/share/1ib/terminfo 197

Jusr/share/man 79

Jusr/xpgd/bin 247, 254

fvar 19

Jvar/mail 196, 311, 346

Jvar/spool/cron/crontabs 188

[var/spool/mail 196, 346

Jvar/tmp 310

A

Acrobat Reader 373, 378
admin (SCCS) 450
AIX 16

alias 199-200, 230

anonymous FTP 353, 360

Apple 333

apropos 37-38

ar 475-477

archive 98

ARPANET 1IZ

as 467

ASCII 35
collating sequence 13, 76, 219, 250
octal value 47, 94, 241
value 65, 404

at 187-188

controlling access to 308

AT&T 15-16,27,335

atomic operation 494

awk 381-398

Index

awk functions

index 393
int 393
length 393
split 394
sqrt 393
substr 394
system 394
table 395

awk variables 384-385, 388, 390-391

FILENAME 39]
FS 390

NF 390

NR 383

OFS 390
table 391

-f option 388-389
arrays 391-393

BEGIN section 389-390
comparison operators 385-386
computation 388
delimiter used 383

END section 389-390
ENVIRON 393

fields 383

for loop 396-398
tunctions 393

hash arrays 392, 397-398
if statement 394-396

logical operators (|| and &&) 386, 395

numeric comparison 387
operators table 387
print statement 382
printf statement 384
redirection 384

regular expression operators (~ and !-)

386-387
regular expressions 382, 386-387
while loop 398

B

Bach, Maurice 511
basename 293-294
bash See Bash shell
Bash shell 9, 12, 23, 147, 166, 182, 183, 194,
197-207, 271, 286, 306, 357, 450-453, 545
event number (!} 198, 200-201
PS1 variable 197-198
using $0 274
using echo 47,271
batch 188
controlling access to 308
be 49-50, 160
Berkeley Software Distribution (BSD) See
BSD UNIX
Berners-Lee, Tim 373
bg 186
block size
logical 576
physical 576
blocking (waiting) 502, 534, 557
boot file system 577

cron 175, 188-189 310
controlling access to 308
crontab 189-190
cryptography 360-362
symmetric key algorithms 361, 362, 363
asymmetric key algorithms 361-362
csh See C shell
current directory 69, 74, 75, 179-180
cut 231-233, 237, 240, 284, 294

D

DARPA 17, 355, 356, 357
date 9-10, 12, 45-46, 74, 294
used by system administrator 307
dd 320-321
Debian Linux 18
decryption 361
delta (SCCS) 482, 485
device file 66,317-319
block special 318
character special 318
listing 317
major number 318
minor number 318
table 319
device driver 318
df 315-316
in Linux 316
diff 96-97, 255
Digital UNIX 16
directory 13,24, 28, 66, 211, 214, 513
permissions 115-116, 216-217
dirent structure 513

disk fragmentarion 577

domain 368

Domain Name System (DNS) 342, 354, 355,
363, 363, 368-370, 371

DOS 5.6,9, 28, 31, 67,70, 77, 86, 97, 149,
319, 320-321

Index

AUTOEXEC.BAT 9, 77, 205
handling diskettes 320-321
dos2unix 97-98
doscat 321
doscp 320-321
dtfile (CDE) 344, 345
dtterm (CDE) 339
dtwm (CDE) 335-336
du 316-317
dump 582

E

echo 22-23, 29, 33, 46-47, 279
escaping in 154
in Linux 47, 271
quoting in 133-154
effective GID 179-180, 536
effective UID 179-180, 525, 536
egrep 254,255, 382
email 51-52, 370-373
addressing scheme 51-52
attachments 372
automatic forwarding 372
mailbox 51, 53
mbox 51, 54
message structure 372
role of DNS 371
signature file 371-372
encryption 361, 362
env 195, 449
environment variables 180, 194, 195-199
BASH_ENV 207
ENV 207
HISTFILE 202
HISTFILESIZE 2012
HISTSIZE 202
HOME 69, 196, 313
IFS 197, 294, 299
LOGNAME 197

ﬁ Index

MAIL 196, 312, 346
MAILCHECK 196
PATH 28-29, 74, 169, 195, 306
PS1 196, 197
PS2 196
SHELL 147, 196, 313
TERM 124, 197
table 198
Epoch 46, 187
errno table 507
errno variable 504-506
escape sequence 47, 94
table 48
exec 179, 180
exit 15,50, 117, 204, 339
exit status 179
export Sece shell variables
expr 285-287
compared with basename 294
compared with let 450
computation 286
string handling 286-287

F

fdformat 319
in Linux 319

fdisk (Linux) 578-579

fg 186

file 12, 24, 28, 65-66
access ime 218-219
binary 65

compression 98

group ownership 107, 109, 116

inode modification time 218
links 107

modification time 108, 218-219

name 67, 108
offset pointer 495
ordinary 63

ownership 72, 107, 109, 116
parent-child relationship 67-68
permissions 107, 109-110, 114-115
size 108
text 24, 65
type 107
file command 92-93
file descriptor 158, 159, 180, 462-463, 495
manipulation 553-555
file descriptor table 509-510, 536
file system 67-68, 79-80, 211, 315, 574-578
clean/dirty 583
components 574-577
mounting 580-581
organization in SVR4 79-80
types 577-578
file table 509, 510-511, 537
filter 26,61, 101, 159, 228
find 220-224
displaying listing 223
executing UNIX command 223-224
file size 317
file type 221
in backups 589-590
in Linux 220
inode number 221
operators 222
options table 223
permissions 221-222
SUID programs 310
unused files 222
used with cpio 322, 323
fork 179, 180
format 319
Free Software Foundation See GNU
Frequently Asked Questions (FAQ) 27
fsck 583-584, 589
ftp 97,98, 179, 354, 355, 357-360, 367
ASCII mode 359
binary mode 359

658 Index

jobs 186
Joy, Ball 120, 194

K

Kahn, Robert 17
KDE 337, 338, 339, 344
kernel 22,25,212
kernel mode 493
Kernighan, Brian 3
keys
[Backspace| 6
[Cerl-\] 561
[Ceri-¢] 7,39, 60, 545, 561
[Ceri-d] 15,40, 41, 83, 204, 347
[Cirl-g] 95
[Crrl-h] 39, 60
[Cerl-i] 30,95, 260
[Ctrl-j] 40,95
[Cerl-i] 95
[Ctrl-m] 40, 97
[Ctrl-g] 40
[Ctri-s] 40
[Crrl-u] 39, 60
[Ceri-z] 130, 186, 561
[Cerl] 7
[Carl] [Alt] [Del] 315
[Delete] 7,39, 60
[Enter] 6,10, 31
[Tab] 30,94, 95, 260
function keys 7
kill 184-185, 187
Korn shell 9,12, 23, 147, 166, 194, 197-207,
271, 286, 306, 450-453, 545
event number (!) 198, 200-201
PS1 variable 197-198
Korn, David 194
ksh See Korn shell

L

1d 467
less 34, 88, 90
commands table 90
library functions 24, 493
closedir 513
exec 546-553
exit 540-542
getcwd 512
getenv 539
opendir 513
perror 504, 505
printf buffering 539
raise 569
readdir 513
rewinddir 513
setenv 339
strerror 504-505
system 553
line, definition 93
linefeed (LF) 65, 95, 97, 98, 153, 359
link (hard) 212-214, 215
link (soft) See symbolic link
Linux 16, 17-18, 24, 30, 34, 176, 189, 231,
247, 317, 337, 338, 342, 348, 359, 401, 433
--help option 38-39
In 213-214
localhost 371
logging in 7-8
logging out 13
login 180, 586
logout 15
1p 91,92, 162
1pg 92
1pr 91,92
Tprm 92
1psched 178
1s 13, 75-78
displaying hidden files 77

displaying inode number 211-212
displaying time stamps 218-219
in Linux 75
listing (-1) 13, 106-108
listing directory (-d) 108
options table 78
recursive behavior 78
with directories 77-78
lynx 377

M

magic number 93
Mail 52
Mail Delivery Agent (MDA) 370, 371
Mail Transport Agent (MTA) 370, 371
Mail User Agent (MUA) 370, 371
mailx]2,52-55, 58,179

internal commands table 35

with here document 296
make 471-475

cleaning up 474

dependency tree 472

macros in 474-475

redundancies 473-474

with ar 477
makefile 471
man 33-38, 162-163

-f option 38

-k option 37-38

documentation table 37

navigation 34
PAGER variable 37
sample page for we 36
Mandrake Linux 18
Massachusetts Institute of Technology (MIT)
17, 334, 344
Master Boot Record (MBR) 575
McNealy, Scott 16
Memory Management Unit (MMU) 535
metacharacter 13, 26, 32, 146

Index

Microsoft 17, 333

mingetty (Linux) 586

mkdir 71,72, 73

mkfs 580

Moolenaar, Bram 120

more 34, 88-90, 94
and vi 90
commands table 90

in a pipeline 89-90, 163
pattern search in 89
Mortif window manager 335, 336
mount 581-583
mount point 581
Mozilla 179, 339, 346, 371, 377
mtools (Linux) 321
MULTICS 16
multipart message 377
Multipurpose Internet Mail Extensions
(MIME) 372-373, 375, 377-378
Content-Transfer-Encoding header
Content-Type header 372-373
mv 87
compared with rename system call 516
with find 224
mwm 336

N

372-373

name server 369-370

Netscape 346, 371, 377, 378
newline character See linefeed (LF)
newsgroups 27

nice 183-184

nohup 182-183, 184

Novell 16, 336

nroff 376

O

octal numbers 113
od 94-95

‘ Index

Open Look window manager 335
operating system 4-5, 22
orphan process 182, 546

P

pager 34
parent PID (PPID) 174, 176
partition 211, 574
passphrase 363
passwd 9, 55-56, 180, 310, 522-523
used by system administrator 308-309, 573
password 8
aging 573
encryption 56, 312
framing rules 56-57
paste 233-234, 237
joining lines 234
PATH See shell variables
pathname
absolute 69, 73-74
relative 74-75
perl 265, 282, 375, 401-428
-e option 402
-n option 407
array 408-409, 411-412
array, built-in (@_) 415
array (GARGY) 410-411
associative array 417-418
associative array (%ENV) 419
chop function 403-404
command substitution in 413
concatenation (. and x) 405
current line number ($.) 408
default variable (§_) 407-408, 412, 413,
420
diamond operator (<) 406
die function 410
file handling 423-424
file tests 425
filechandle 424

for loop 413
foreach loop 412-413
functions 402
grep function 416-417
if conditional 403
in-place editing 423
interpreter line 402
interval regular expression (IRE) 422
join function 415-416
list 408-409
operators 404-405
quoting 404
qw function 410
range operator (..) 408
regular expression 420-423
regular expression table 422
require statement 427
s function 420-421
select function 424
split funcdon 413-415
string functions 405-406
subroutine 426-427
tagged regular expression (TRE) 422-423
tr function 420-421
variables 402, 404-405
while loop 406
Pike, Rob 3
ping 356
pipe 14, 161-164, 183
PKUNZIP 102
PKZIP 102
plugin 373, 378
port number 353-354
Portable Document Format (PDF) 349, 372,
373
POSIX 11, 24, 26, 27-28, 38, 50, 52, 89, 166,
231, 247, 249, 393, 476, 512, 539, 557
Post Office Protocol (POP3) 371
Postscript 92, 349
pr 229-230

$1 185
$# 273,274, 281, 285, 294
$* 273,274, 281, 294
"$@" 281
$0 274, 288
table 275
shell programming 27, 270-302, 447-464
271
#1271
(()) 450
[1 synonym for test 280
. (dot) command 449-450
arrays 450-451
break 30
case statement 283-285
continue 300
eval 365, 459-460
exec 461-464
exit 275
export See shell variables
file test 278, 282-283
file test table 283
for loop 291-294
here document 296-297
if conditional 277-278
interpreter line 271, 447
let for computation 450
logical operators (&& and |]) 276
numerical comparison 278-279
parameter substitution 453-454
positional parameters 273-275, 292, 294, 295
read statement 272-273
set -- 296
set -x 298-299
set statement 294
shell funcuon 456-459
shell functions and aliases 199
shell script 27, 181, 271
shift statement 295

Index

string comparison 278, 280-282
string handling 286-287, 452-453
test operators table 279, 282, 283
test statement 278-283
trap statement 297-298, 301
until loop 291
while loop 289-291
with /dev/tty 279, 289-290, 455
shell script See shell programming
shell variables 15, 166-169, 292, 297
concatenation l68
export 37,195, 448-449
shell wild-cards 147-151, 169, 292, 323
* 26, 85, 86, 93, 146, 148-149, 285
7 149, 285
[150
[1 character class 150, 285
{} 150-151
dot matching 149
table 148
Shockwave 377
shutdown 314, 589
in Linux 315
SID (SCCS ID) 479
signals 184, 297-298, 560-562
blocking 566
disposition 560
disposition table 536, 562
pending signals mask 536, 562
reliable 566
table 563
unreliable 565-566
SIGABRT 561
SIGALRM 561
SIGCHLD 561
SIGFPE 561
SIGHUP 298, 561
SIGILL 561
SIGINT 184, 298, 545, 560, 561

I_G?d Index

SIGKILL 184, 562
SIGQUIT 561
SIGSEGY 561
SIGSTOP 184, 561, 562
SIGTERM 184, 298
SIGTSTP 561
SIGTTIN 561
Simple Mail Transfer Protocol (SMTP)
371, 372
Single UNIX Specification 27-28
sleep 290-291
slogin 366
Solaris 16,92, 97, 116, 117, 176, 231, 248, 314,
315, 317, 327, 338, 343, 348, 359, 401
sort 234-237, 242
invi 433-434
numeric 236
options table 237
primary key 234
removing repeated lines 236
secondary key 234-235
Source Code Control System (SCCS) 97,
478-486
branch delta 479, 484-485
checking in 478
checking out 478
compared with diff 478
compared with RCS 487
delta 478-479
identification keywords 485-486
lock file 481
SCCS file 479
source 206, 207
ssh 341, 342, 364, 365, 366-367
ssh-add 365
ssh-agent 365
ssh-keygen 363-364
sshd 362
Stallman, Richard 1Z

standard error 155, 158, 159
standard input 155-156, 228
significance of = 156, 164
standard output 155, 156-157, 165, 228
startx 338, 347
stat structure 516-517
static library 477-478
sticky bit 310
stty 40, 59-61, 187
setting options 60-61
su 116, 306-307
Sun Microsystems 16, 335
SunOS 8§, 16, 58
superblock 574-575, 580, 583, 584
superuser See system administrator
supplementary groups 117, 311
SuSE Linux 18, 337
SVR3 See System V Release 3
SVR4 See System V Release 4
swap file system 577
symbolic link 16, 215, 272
dangling 215
fast 215
in Linux 215
sync 589
system administrator 7, 10, 116, 188, 189,
231, 306
privileges 307-308
system calls 22, 24, 282, 425, 493-494, 534
error handling 504-506
_exit 540-542
abort 561
access 224
alarm 562, 567
chdir 312
chmod 526, 527
chown 526, 527-528
close 497
creat 496

Index

46..

unget (SCCS) 483

Uniform Resource Locator (URL) 373, 374,

375, 376
uniq 238-239, 241-242
University of California, Berkeley 16
UNIX 3
history 15-17
multiprogramming 3, 25
multitasking 25, 534
multiuser 25
run level Sec init
shutdown 314
startup 313-314
unix2dos 97-98
unzip 98, 102-103
user mode 493
user-id See UID
useradd 312, 574
userdel 313
usermod 147,313
username 8
utimbuf strucrure 528

\Y

version control 478

vi 120-144, 197, 203, 262, 403, 431-44
abbreviate command 443
aborting session 1219
appending text 125
buffers in 128
changing text 433
clearing screen 123
Command Mode 121, 122
command reference 600-605
current cursor position 121
current line 121, 134
deleting 135
deleting with operators 135, 432
escape to shell 130

ex Mode 122, 128-131, 435-437
ex Mode table 131,437
executing C program 443
executing shell seript 443
filtering text 433-434

Input Mode 121, 122, 124-128, 340
Input Mode table 128
inserting command output 436
inserting control character 439
inserting file 436

inserting text 124-125

joining lines 137

keys with no function 124

Last Line Mode See vi, ex Mode
map command 442-443
marking text 440

moving text 135-136

moving text between files 438
multiple files 435

named buffers 437

navigation 131-134

numbered buffers 438-439
opening new line 124, 126
operator-command table 434
operators 134, 431-435
quitting 129

recovering from crash 130
reloading last saved file 435
repeat factor 122,126, 132, 203
repeating last command 138, 139
repeating search 139, 440
replacing text 124, 126-127
role of ! 129, 435

role of [Ese] 121,124,125, 127
saving 128

search for character 439-440
search for pattern 138-139
search-repeat table 140, 440
set autoindent 441

set autowrite 436
set ignorecase 441
set nomagic 441
set number 441
set showmatch 441-442
set showmode 124
set tabstop 442
set options table 442
substituting text 140-141
suspending 130
toggling between two files 436, 437
undoing 123, 137
multiple line deletions 438-439
word in 132
writing lines 129-130
vanking text 136-137, 432-433
vim 120, 124, 340
redoing 137
splitting the window 436-437
substituting text 141
text completion 127
undoing 137
vnode table 511

W

wait 179

wall 307-308, 314

Wall, Larry 401

we 14, 93-94, 155, 162, 164

whatis 38

whitespace 30

who 11-12,57-58, 161-162, 164
displaying run level 314
used with cut 233

window manager See X Window

Windows 5, 6, 17, 24, 25, 29, 67, 98, 149, 215,

- 2

320, 336, 359, 378, 436
WINZIP 98
word, definition 30, 93
World Wide Web 373-378

Index &EI

X

X See X Window

X Window 177, 334-336, 437
-display option 341, 342
client 334, 335
command line options 343-344
command options table 344
copying text 339-341
DISPLAY variable 341, 342
resources 348
server 334
window manager 335-336

X/OPEN 16
Portability Guide 27

xargs 590-591

xbiff 346

xcalc 341, 345

xclipboard 340-341, 437

xclock 345, 349

xdm 338

XENIX 16

xfm 344

xhost 341

xinit 338, 347

xkill 347

xload 346-347

xrdb 348-349

xterm 338-339, 343, 344, 347, 348

Z

zcat 100
zip 98, 102-103
zmore 100

zombie process 181, 545

Quick Reference

EE_9|

The 1s Command (Include -1 option for listing)

Command Displays

1s -a All filenames including those beginning with a dot
Is -d .* Only filenames beginning with a dot

Is -R Recursive tile list

Is -1 Long listing in ASCII collating sequence

1s Jetc Filenamesin /etc

Is -d Jetc Only /etc

1s -1d /etc Listing of fetc

1s -1 Jetc Listing of all filenames in /etc

s -1Ra / Recursive listing of all hilenames in file system
s -t Filcnames sorted by last modification time

s -u Filenames sorted by last access ume

Is -i Inode number

Switching Directories (Setting CDPATH makes navigation easier)

Command

Action

cd ~sharma
cd ~/sharma
cd -

Switches to home directory of sharma
Switches to directory SHOME /sharma
Toggles between current and previous directory

cd Switches to SHOME

Wild-cards vs Regular Expressions (EREs available in grep -E, egrep and awk)
Wild-card Regular Expression Matches o

* ¥ Any number of characters including none

? Asingle character

- * Zero or more occurrences of the previous character
- g* Nothing or g, g, ggg, etc.

- g? Nothing org (ERE)

- g+ g. 94, ggq, ctc. (ERE)

[ijk] [iik] i,jork

[b-m] [b-m] Any character between b andm

[1b-m] [~b-m] Any character not between bandm

[la-zA-70-9] [™a-zA-Z0-9] Any non-alphanumeric character

- ~#include #include at beginning of line

- */% */atend of line

- ~“MARKS MARK as only word in line

- ~$ Lines containing nothing

- GIF|JPEG GIF or JPEG (ERE)

(lock|ver)wood

lockwood or verwonod (ERED}

